Green synthesis of magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@C-nanodot@GO) for magnetic solid phase extraction of ibuprofen in human blood samples prior to HPLC-DAD determination
•A green hydrothermal production method was used for magnetic carbon nanodot/graphene oxide (Fe3O4@C-nanodot@GO).•Magnetic solid phase extraction (MSPE) method was developed for ibuprofen in human plasma prior to HPLC-DAD determination.•C-nanodots were produced from pasteurized cow milk.•Concentrati...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical and biomedical analysis 2020-02, Vol.179, p.113001-113001, Article 113001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A green hydrothermal production method was used for magnetic carbon nanodot/graphene oxide (Fe3O4@C-nanodot@GO).•Magnetic solid phase extraction (MSPE) method was developed for ibuprofen in human plasma prior to HPLC-DAD determination.•C-nanodots were produced from pasteurized cow milk.•Concentration changes of ibuprofen in human blood against time was successfully monitored.
In this study, a green production method was used to obtain magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@C-nanodot@GO) for the magnetic solid phase extraction (MSPE) of ibuprofen (IBU) in human plasma prior to HPLC-DAD determination. For the first time in the literature, Fe3O4@C-nanodot@GO hybrid material was synthesized and used as an adsorbent. C-nanodots were produced from pasteurized cow milk by using a simple and cheap hydrothermal method. After production of the C-nanodots and GO, Fe3O4@C-nanodot@GO hybrid material was fabricated in green solvent medium by using an one-step hydrothermal method. The method was based on the simple separation, preconcentration and analysis of ibuprofen by using MSPE-HPLC-DAD combination. The concentration changes of ibuprofen in human bloods against time were successfully monitored by using this combined method. For this purpose, blood samples were taken from volunteers at certain intervals after the administration of a certain dose of ibuprofen, and the MSPE method was used to monitor the concentration changes of ibuprofen in the blood samples. Experimental variables affecting the extraction efficiency of IBU such as sample solution pH, amount of adsorbent, extraction time, eluent type and volume were studied and optimized in the details. The characterization studies for the Fe3O4@C-nanodot@GO were carried out by X-ray diffraction spectrometry (XRD), Fourier transform infrared spectrometry (FT-IR), Raman spectrometry (Raman), energy dispersive x-ray (EDX), vibrating sample magnetometry (VSM) and scanning electron microscopy (SEM) techniques. Under the optimum experimental conditions, the limit of detection (LOD) was 8.0 ng mL−1 and the recoveries at three spiked levels in human plasma were ranged from 91.0% to 95.0% with the relative standard deviation (RSD %) less than 4.0 % (n = 6). The results show that together use of MSPE with HPLC-DAD provides a simple and rapid analysis of ibuprofen in human plasma samples. |
---|---|
ISSN: | 0731-7085 1873-264X |
DOI: | 10.1016/j.jpba.2019.113001 |