Tunable and Magnetic Thiol–ene Micropillar Arrays
Tunable and responsive surfaces offer routes to multiple functionalities ranging from superhydrophobic surfaces to controlled adhesion. Inspired by cilia structure in the respiratory pathway, magnetically responsive periodic arrays of flexible and magnetic thiol–ene micropillars are fabricated. Omni...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2020-01, Vol.41 (2), p.e1900522-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tunable and responsive surfaces offer routes to multiple functionalities ranging from superhydrophobic surfaces to controlled adhesion. Inspired by cilia structure in the respiratory pathway, magnetically responsive periodic arrays of flexible and magnetic thiol–ene micropillars are fabricated. Omnidirectional collective bending of the pillar array in magnetic field is shown. Local non‐contact actuation of a single pillar is achieved using an electromagnetic needle to probe the responsiveness and the elastic properties of the pillars by comparing the effect of thiol–ene crosslinking density to pillar bending. The suitable thiol–ene components for flexible and stiff magnetic micropillars and the workable range of thiol‐to‐allyl ratio are identified. The wettability of the magnetic pillars can be tailored by chemical and topography modification of the pillar surface. Low‐surface‐energy self‐assembled monolayers are grafted by UV‐assisted surface activation, which is also used for surface topography modification by covalent bonding of micro‐ and nanoparticles to the pillar surface. The modified thiol–ene micopillars are resistant to capillarity‐driven collapse and they exhibit low contact angle hysteresis, allowing water droplet motion driven by repeated bending and recovery of the magnetic pillars in an external magnetic field. Transport of polyethylene microspheres is also demonstrated.
Flexible liquid‐repellent thiol–ene magnetic micropillars can be used to transport droplets and beads by magnetically actuated motion. The unique properties of thiol–ene allow for both flexibility and surface topography of the micropillars to be tailored by tuning composition and reactive chemistry. Thiol–ene pillars decorated with colloidal micro‐ and nanoparticles exhibit superhydrophobicity, enabling directional water droplet motion. |
---|---|
ISSN: | 1022-1336 1521-3927 |
DOI: | 10.1002/marc.201900522 |