Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
Access to dense panels of molecular markers has facilitated genomic selection in animal breeding. The purpose of this study was to compare the nonparametric (random forest and support vector machine), semiparametric reproducing kernel Hilbert spaces (RKHS), and parametric methods (ridge regression a...
Gespeichert in:
Veröffentlicht in: | Journal of genetics 2019-11, Vol.98 (4), p.1-8, Article 102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Access to dense panels of molecular markers has facilitated genomic selection in animal breeding. The purpose of this study was to compare the nonparametric (random forest and support vector machine), semiparametric reproducing kernel Hilbert spaces (RKHS), and parametric methods (ridge regression and Bayes A) in prediction of genomic breeding values for traits with different genetic architecture. The predictive performance of different methods was compared in different combinations of distribution of QTL effects (normal and uniform), two levels of QTL numbers (50 and 200), three levels of heritability (0.1, 0.3 and 0.5), and two levels of training set individuals (1000 and 2000). To do this, a genome containing four chromosomes each 100-cM long was simulated on which 500, 1000 and 2000 evenly spaced single-nucleotide markers were distributed. With an increase in heritability and the number of markers, all the methods showed an increase in prediction accuracy (
P
|
---|---|
ISSN: | 0022-1333 0973-7731 |
DOI: | 10.1007/s12041-019-1149-3 |