Far-infrared absorption measurements of graphite, amorphous carbon, and silicon carbide
The mass absorption coefficients of graphite (G), amorphous-carbon (AC), and SiC grains at 25-250 microns are determined experimentally at room temperature and applied to the interpretation of published IR observations of IRC+10216. Absorption measurements are obtained using a single-beam grating sp...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of Japan 1983, Vol.35 (3), p.397-404 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mass absorption coefficients of graphite (G), amorphous-carbon (AC), and SiC grains at 25-250 microns are determined experimentally at room temperature and applied to the interpretation of published IR observations of IRC+10216. Absorption measurements are obtained using a single-beam grating spectrometer with a Goley-cell detector by a polyethylene-powder-tablet technique. The results are presented in a table and graphs. The mass absorption constants (in sq cm/g) are calculated as 642 for G, 281 for AC produced in Ar, 93.9 for AC produced in H2, and 19.6 for SiC; power-law relationships to wavelength, with indices of -2.18, 0.60, -0.59, and -1.37 (respectively) are established. AC is found to be the most likely constituent of the IRC+10216 dust cloud, permitting the dust mass to be estimated as 0.0001 solar mass. |
---|---|
ISSN: | 0004-6264 |