In vitro antioxidant and angiotensin-converting enzyme inhibitory activity of fermented milk with different culture combinations
This study investigated the effects of Lactobacillus plantarum (Lp) and Bifidobacterium animalis ssp. lactis (Ba) in co-cultures with Streptococcus thermophilus (St) on changes in the acidification profile, proteolytic activity, peptide production, in vitro antioxidant activity, and angiotensin-conv...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2020-02, Vol.103 (2), p.1120-1130 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the effects of Lactobacillus plantarum (Lp) and Bifidobacterium animalis ssp. lactis (Ba) in co-cultures with Streptococcus thermophilus (St) on changes in the acidification profile, proteolytic activity, peptide production, in vitro antioxidant activity, and angiotensin-converting enzyme (ACE) inhibitory properties of fermented milks during 21 d of storage at 4°C. The pH values and proteolysis in all batches showed a gradual decrease and increase during storage, respectively. The ACE-inhibitory activity and total antioxidant capacity of all co-fermented milk samples followed a similar pattern, with maximum values on d 6 of storage. The St starter, in conjunction with Ba or Lp or both, enhanced proteolysis, peptide generation, and ACE-inhibitory and antioxidant activity, but decreased pH values compared with St alone. The St-Ba-Lp samples showed higher DPPH• (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, hydroxyl radical scavenging activity, and total antioxidant capacity, but similar superoxide anion scavenging activity compared to St-Ba or St-Lp samples. The St-Ba samples showed higher DPPH• radical scavenging activity but lower hydroxyl radical scavenging activity than St-Lp samples. In the ACE-inhibitory assays, the St-Lp samples exhibited relatively low activity among the co-fermented milks, digested or not. The presence of Ba and Lp in fermentation together did not affect ACE-inhibitory activity in undigested fermented milks compared with the presence of Ba alone, and St-Ba-Lp fermented milks demonstrated an increase in ACE-inhibitory activity after simulated gastrointestinal digestion in storage. Pepsin digestion largely improved ACE-inhibitory activity, except in St-Lp samples, in which the activity was reduced. Further hydrolysis by trypsin reduced final activity in digestion. This study suggests that co-cultured fermentation with probiotics improves in vitro antioxidant and ACE inhibition activity in fermented milks, and this effect is partly due to the higher proteolytic activity of probiotics. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2019-17165 |