Additive‐Free Green Light‐Induced Ligation Using BODIPY Triggers

Photochemical ligation is important in biomaterials engineering for spatiotemporal control of biochemical processes. Such reactions however generally require activation by high energy UV or short wavelength blue light, which can limit their use as a consequence of the potential of these high energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-02, Vol.59 (6), p.2284-2288
Hauptverfasser: Li, Ming, Dove, Andrew P., Truong, Vinh X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photochemical ligation is important in biomaterials engineering for spatiotemporal control of biochemical processes. Such reactions however generally require activation by high energy UV or short wavelength blue light, which can limit their use as a consequence of the potential of these high energy light sources to damage living cells. Herein, we present an additive‐free, biocompatible, chemical ligation triggered by mild visible light. BODIPY dyes with a pendant thioether attached at the meso‐position undergo photolysis of the [C−S] bond under green light (λ=530 nm) excitation, producing an ion pair intermediate that can react specifically with a propiolate group. The utility of this photochemical ligation in materials science is demonstrated by the fabrication of hydrogels with specific architectures, photo‐immobilization of biomacromolecules, and live cell encapsulation within a hydrogel scaffold. Photochemical ligation between BODIPY thioether and propiolate, triggered by green light, enables formation of hydrogel and photo‐patterning of bioactive molecules.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201912555