Long non-coding RNA Snhg3 protects against hypoxia/ischemia-induced neonatal brain injury

Hypoxic-ischemic brain damage (HIBD) is a major cause of morbidity and mortality in the preterm and term infant. However, the precise mechanism of HIBD remains largely elusive. As a newly discovered long non-coding RNA, small nucleolar RNA host gene 3 (Snhg3) has shown its important roles in cell ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and molecular pathology 2020-02, Vol.112, p.104343-104343, Article 104343
Hauptverfasser: Yang, Qing, Wu, Ming-Fu, Zhu, Li-Hua, Qiao, Li-Xing, Zhao, Rui-Bin, Xia, Zheng-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxic-ischemic brain damage (HIBD) is a major cause of morbidity and mortality in the preterm and term infant. However, the precise mechanism of HIBD remains largely elusive. As a newly discovered long non-coding RNA, small nucleolar RNA host gene 3 (Snhg3) has shown its important roles in cell apoptosis, proliferation, and disease development. In this study, we determined the role of Snhg3 in the pathogenesis of HIBD. Snhg3 expression was significantly down-regulated in the neonatal brain and primary hippocampal cells response to hypoxic/ischemic stress. Snhg3 overexpression protected against hypoxic/ischemic-induced brain injury in vivo and hippocampal cell injury in vitro. Snhg3 acted as the sponge of miR-196 in the hippocampal cells by regulating the expression of miR-196 target genes, XIAP and CAAP1. Moreover, Snhg3 overexpression decreased brain infarct size and ameliorated hypoxic-ischemic neonatal brain damage. This study suggests that Snhg3 is a potential target for the treatment of HIBD.
ISSN:0014-4800
1096-0945
DOI:10.1016/j.yexmp.2019.104343