Sensitive detection of cardiac troponin-I protein using fabricated piezoresistive microcantilevers by a novel method of asymmetric biofunctionalization
Microcantilever-based sensor platform has attracted a lot of attention over the time in detection of a variety of molecules due to their miniaturized dimensions. Sensitivity enhancement is an important aspect of such sensors, especially when used for point-of-care diagnostic purpose. However, the ma...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-03, Vol.31 (11), p.115503-115503 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microcantilever-based sensor platform has attracted a lot of attention over the time in detection of a variety of molecules due to their miniaturized dimensions. Sensitivity enhancement is an important aspect of such sensors, especially when used for point-of-care diagnostic purpose. However, the major concern while operating these sensors in deflection mode is their sensitivity which mainly relies on selective chemical modification protocols employed on these sensor surfaces. One of the ways of getting better sensitivity is through asymmetric (one side) biofunctionalization of the sensor surface. In the presented work here, we have demonstrated a novel approach of asymmetric biofunctionalization of proteins in overall sensitivity enhancement of piezoresistive silicon nitride-oxide microcantilever sensor platform inside a flow chamber. Herein, using our developed surface chemistry, asymmetrically biofunctionalized microcantilevers first exhibited a greater electrical response in terms of piezoresistance change than their symmetric counterpart in the detection of human immunoglobulins (HIgGs) protein. Finally, these microcantilevers were employed to exhibit the enhanced sensitivity towards the detection of a crucial cardiac marker protein, i.e. Troponin-I (cTnI) down to 250 ng ml
using asymmetric biofunctionalization process. This study shows that the developed asymmetric biofunctionalization methodology may be used as a general protocol to detect other important biomarkers of clinical applications with improved sensitivity. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab5a18 |