Cancer Cell Membrane-Camouflaged Nanorods with Endoplasmic Reticulum Targeting for Improved Antitumor Therapy

Cell membrane-coated nanocarriers have been developed for drug delivery due to their enhanced blood circulation and tissue targeting capacities; however, previous works have generally focused on spherical nanoparticles and extracellular barriers. Many living organisms with different shapes, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-12, Vol.11 (50), p.46614-46625
Hauptverfasser: Zhang, Wei, Yu, Miaorong, Xi, Ziyue, Nie, Di, Dai, Zhuo, Wang, Jie, Qian, Kun, Weng, Huixian, Gan, Yong, Xu, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell membrane-coated nanocarriers have been developed for drug delivery due to their enhanced blood circulation and tissue targeting capacities; however, previous works have generally focused on spherical nanoparticles and extracellular barriers. Many living organisms with different shapes, such as rod-shaped bacilli and rhabdovirus, display different functionalities regarding tissue penetration, cellular uptake, and intracellular distribution. Herein, we developed cancer cell membrane (CCM)-coated nanoparticles with spherical and rod shapes. CCM-coated nanorods (CRs) showed superior endocytosis efficiency compared with their spherical counterparts (CCM-coated nanospheres, CSs) due to the caveolin-mediated pathway. Moreover, CRs can effectively accumulate in the endoplasmic reticulum (ER) region and ship the loaded DOX to the nucleus at a considerable concentration, resulting in ER stress and subsequent apoptosis. After intravenous injection into human pancreatic adenocarcinoma cell (BxPC-3) and pancreatic stellate cell (HPSC) hybrid tumor-bearing nude mice, CRs exhibited improved immune escape ability, rapid extracellular matrix (ECM) penetration (8.2-fold higher than CSs), and enhanced tumor accumulation, further contributing to the enhanced antitumor efficacy. These findings may actually suggest the significance of shape design in improving current cell membrane-based drug delivery systems for effective subcellular targets and tumor therapy.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b18388