The Accuracy of Prevalent Vertebral Fracture Detection in Children Using Targeted Case‐Finding Approaches
ABSTRACT Due to concerns about cumulative radiation exposure in the pediatric population, it is not standard practice to perform spine radiographs in most conditions that predispose to vertebral fracture (VF). In this study we examined the accuracy of two clinical predictors, back pain and lumbar sp...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral research 2020-03, Vol.35 (3), p.460-468 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Due to concerns about cumulative radiation exposure in the pediatric population, it is not standard practice to perform spine radiographs in most conditions that predispose to vertebral fracture (VF). In this study we examined the accuracy of two clinical predictors, back pain and lumbar spine bone mineral density (LS BMD), to derive four case‐finding paradigms for detection of prevalent VF (PVF). Subjects were 400 children at risk for PVF (leukemia 186, rheumatic disorders 135, nephrotic syndrome 79). Back pain was assessed by patient report, LS BMD was measured by dual‐energy X‐ray absorptiometry, and PVF were quantified on spine radiographs using the modified Genant semiquantitative method. Forty‐four patients (11.0%) had PVF. Logistic regression analysis between LS BMD and PVF produced an odds ratio (OR) of 1.9 (95% confidence interval [CI], 1.5 to 2.5) per reduction in Z‐score unit, an area under the receiver operating characteristic curve of 0.70 (95% CI, 0.60 to 0.79), and an optimal BMD Z‐score cutoff of −1.6. Case identification using either low BMD alone (Z‐score |
---|---|
ISSN: | 0884-0431 1523-4681 |
DOI: | 10.1002/jbmr.3922 |