Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol
The present study reports the biosynthesis of silver nanoparticles (AgNPs) using Bacillus amyloliquefaciens MSR5. The cellfree supernatant of B. amyloliquefaciens acted as a stabilizing agent for the synthesis of AgNPs. The synthesized AgNPs were characterized using UV-vis spectrophotometer, PXRD, F...
Gespeichert in:
Veröffentlicht in: | Journal of photochemistry and photobiology. B, Biology Biology, 2020-01, Vol.202, p.111642-111642, Article 111642 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study reports the biosynthesis of silver nanoparticles (AgNPs) using Bacillus amyloliquefaciens MSR5. The cellfree supernatant of B. amyloliquefaciens acted as a stabilizing agent for the synthesis of AgNPs. The synthesized AgNPs were characterized using UV-vis spectrophotometer, PXRD, FTIR, SEM-EDX, DLS, and TEM. TEM image showed the spherical shape of the biosynthesized AgNPs and it was found to be 20-40 nm in range. In this study, the AgNPs were prepared by ultrasonic irradiation. The stability of the AgNPs was found to be -33.4 mV using zeta potential. The catalytic 4-nitrophenol (4-NP) degradation by AgNPs was examined under solar irradiation and furthermore, the effects of several degradation parameters were studied. The biosynthesized AgNPs exhibited a strong chemocatalytic action with a comprehensive degradation (98%) of 4-NP to 4-aminophenol (4-AP) using NaBH4 within 15 min. In addition, MTT assay was performed to evaluate the cytotoxicity of the biosynthesized AgNPs (10 – 200 μg). The results have shown that the AgNPs exhibited significant activity on A549 cells, which was dosedependent. The study elucidates the AgNPs synthesized using cellfree culture supernatant can be used for the elimination of hazardous pollutants from wastewater.
[Display omitted]
•Silver nanoparticles (AgNPs) from the B. amyloliquefaciens MSR5 were synthesized.•AgNPs were characterized using UV-Vis spec, PXRD, FTIR, SEM-EDX, DLS, and TEM.•Catalytic activity was tested by 4-nitrophenol degradation under UV light irradiation.•AgNPs have strong chemo catalytic activity with 98% degradation of 4-Nitrophenol.•AgNPs exhibited significant cytotoxicity on A549 cells observed via MTT assay. |
---|---|
ISSN: | 1011-1344 1873-2682 |
DOI: | 10.1016/j.jphotobiol.2019.111642 |