Interleukin‐17 Inhibition in Spondyloarthritis Is Associated With Subclinical Gut Microbiome Perturbations and a Distinctive Interleukin‐25–Driven Intestinal Inflammation
Objective To characterize the ecological effects of biologic therapies on the gut bacterial and fungal microbiome in psoriatic arthritis (PsA)/spondyloarthritis (SpA) patients. Methods Fecal samples from PsA/SpA patients pre‐ and posttreatment with tumor necrosis factor inhibitors (TNFi; n = 15) or...
Gespeichert in:
Veröffentlicht in: | Arthritis & rheumatology (Hoboken, N.J.) N.J.), 2020-04, Vol.72 (4), p.645-657 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
To characterize the ecological effects of biologic therapies on the gut bacterial and fungal microbiome in psoriatic arthritis (PsA)/spondyloarthritis (SpA) patients.
Methods
Fecal samples from PsA/SpA patients pre‐ and posttreatment with tumor necrosis factor inhibitors (TNFi; n = 15) or an anti–interleukin‐17A monoclonal antibody inhibitor (IL‐17i; n = 14) underwent sequencing (16S ribosomal RNA, internal transcribed spacer and shotgun metagenomics) and computational microbiome analysis. Fecal levels of fatty acid metabolites and cytokines/proteins implicated in PsA/SpA pathogenesis or intestinal inflammation were correlated with sequence data. Additionally, ileal biopsies obtained from SpA patients who developed clinically overt Crohn's disease (CD) after treatment with IL‐17i (n = 5) were analyzed for expression of IL‐23/Th17–related cytokines, IL‐25/IL‐17E–producing cells, and type 2 innate lymphoid cells (ILC2s).
Results
There were significant shifts in abundance of specific taxa after treatment with IL‐17i compared to TNFi, particularly Clostridiales (P = 0.016) and Candida albicans (P = 0.041). These subclinical alterations correlated with changes in bacterial community co‐occurrence, metabolic pathways, IL‐23/Th17–related cytokines, and various fatty acids. Ileal biopsies showed that clinically overt CD was associated with expansion of IL‐25/IL‐17E–producing tuft cells and ILC2s (P < 0.05), compared to pre–IL‐17i treatment levels.
Conclusion
In a subgroup of SpA patients, the initiation of IL‐17A blockade correlated with features of subclinical gut inflammation and intestinal dysbiosis of certain bacterial and fungal taxa, most notably C albicans. Further, IL‐17i–related CD was associated with overexpression of IL‐25/IL‐17E–producing tuft cells and ILC2s. These results may help to explain the potential link between inhibition of a specific IL‐17 pathway and the (sub)clinical gut inflammation observed in SpA. |
---|---|
ISSN: | 2326-5191 2326-5205 |
DOI: | 10.1002/art.41169 |