Full Poincaré beam with all the Stokes vortices

In this Letter, we present a recipe for the generation of full Poincaré beams that contain all Stokes vortices (SVs), namely ðoeTM12, ðoeTM23, and ðoeTM31 vortices. Superposition of two scalar vortex beams with charges ð'TM1 and ð'TM2 (where |ð'TM1|≠|ð'TM2|) in orthogonal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2019-11, Vol.44 (22), p.5638-5641
Hauptverfasser: Arora, Gauri, Ruchi, Senthilkumaran, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this Letter, we present a recipe for the generation of full Poincaré beams that contain all Stokes vortices (SVs), namely ðoeTM12, ðoeTM23, and ðoeTM31 vortices. Superposition of two scalar vortex beams with charges ð'TM1 and ð'TM2 (where |ð'TM1|≠|ð'TM2|) in orthogonal states of polarization (SOP) generates all three types of SVs, out of which two types of them are generic and always lie in a ring, with the third type at the center of the ring with index value (ð'TM2−ð'TM1). Thus, generation of hitherto unknown dark SVs is shown. The number of SVs in a ring is 4|ð'TM2−ð'TM1|. Index sign inversion for all SVs can be achieved by swapping ð'TM1 and ð'TM2. By changing the orthogonal pairs of SOPs of the interfering beams, the SV at the center of the ring can be changed from one to another type such that the other two types take part in the formation of the ring of generic SVs. We have also deduced the expressions for the location of all the SVs in the beam. Experimental results are presented.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.44.005638