Atomic structures and local electronic properties of K- and Rh-modified ceria/Pt(111) inverse model catalysts
Ceria has been widely applied as a support in heterogeneous catalysis due to its unique capability to store and release oxygen. As a typical inverse model catalyst, a ceria/Pt(111) system has attracted much attention due to its strong metal-oxide interaction. The structural and electronic properties...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-11, Vol.151 (18), p.184703-184703 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ceria has been widely applied as a support in heterogeneous catalysis due to its unique capability to store and release oxygen. As a typical inverse model catalyst, a ceria/Pt(111) system has attracted much attention due to its strong metal-oxide interaction. The structural and electronic properties of the ceria/Pt(111) system can be effectively modified by the introduction of alien K and Rh atoms. Here, the K- and Rh-modified ceria/Pt(111) inverse model catalysts have been investigated with high resolution scanning tunneling microscopy and apparent local work function measurement. The experimental results indicate that the K atoms prefer to occupy the top sites of the stoichiometric ceria, while the Rh atoms are prone to stay at the electron-rich ceria island edges. The K and Rh atoms act as an electron donor and acceptor on ceria/Pt(111), respectively. Such a study on the modification of the ceria-based catalysts should help understand strong metal-oxide interaction in heterogeneous catalysis at the atomic level. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5128960 |