CourtTime: Generating Actionable Insights into Tennis Matches Using Visual Analytics

Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2020-01, Vol.26 (1), p.397-406
Hauptverfasser: Polk, Tom, Jackle, Dominik, Haussler, Johannes, Yang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2019.2934243