Photophysical and structural aspects of perylene‐doped 2‐naphthol luminophors: Green emission by exciplex formation

Several perylene (Pery)‐doped 2‐naphthol (2‐NP) (Pery/2‐NP) luminophors were prepared using conventional solid‐state reaction techniques. Energy transfer in the excited state was examined using fluorescence spectroscopy and cyclic voltammetry. Fluorescence studies revealed exciplex formation by Pery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Luminescence (Chichester, England) England), 2020-03, Vol.35 (2), p.292-298
Hauptverfasser: Mane, K.G., Nagore, P.B., Pujari, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several perylene (Pery)‐doped 2‐naphthol (2‐NP) (Pery/2‐NP) luminophors were prepared using conventional solid‐state reaction techniques. Energy transfer in the excited state was examined using fluorescence spectroscopy and cyclic voltammetry. Fluorescence studies revealed exciplex formation by Pery in the form of structureless and broad spectra at higher concentrations with monomer quenching of 2‐NP; a broad green emission was observed in the range 500–650 nm, peaking at 575 nm. Structural properties and thermal stability were analyzed using X‐ray diffraction, scanning electron microscopy and TGA‐differential scanning calorimetry. Highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were observed in the range 5.56–5.61 eV and 2.79–2.81 eV, respectively with a 2.77–2.82 eV band gap. The present study reveals these to be probable candidates for hole‐transporting materials suitable in optoelectronics.
ISSN:1522-7235
1522-7243
DOI:10.1002/bio.3726