Structural Heterogeneity in the Preamyloid Oligomers of β-2-Microglobulin
In dialysis patients, the protein β2-microglobulin (β2m) forms amyloid fibrils in a condition known as dialysis-related amyloidosis. To understand the early stages of the amyloid assembly process, we have used native electrospray ionization (ESI) together with ion mobility mass spectrometry (IM-MS)...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2020-01, Vol.432 (2), p.396-409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In dialysis patients, the protein β2-microglobulin (β2m) forms amyloid fibrils in a condition known as dialysis-related amyloidosis. To understand the early stages of the amyloid assembly process, we have used native electrospray ionization (ESI) together with ion mobility mass spectrometry (IM-MS) to study soluble preamyloid oligomers. ESI-IM-MS reveals the presence of multiple conformers for the dimer, tetramer, and hexamer that precede the Cu(II)-induced amyloid assembly process, results which are distinct from β2m oligomers formed at low pH. Experimental and computational results indicate that the predominant dimer is a Cu(II)-bound structure with an antiparallel side-by-side configuration. In contrast, tetramers exist in solution in both Cu(II)-bound and Cu(II)-free forms. Selective depletion of Cu(II)-bound species results in two primary conformers—one that is compact and another that is more expanded. Molecular modeling and molecular dynamics simulations identify models for these two tetrameric conformers with unique interactions and interfaces that enthalpically compensate for the loss of Cu(II). Unlike with other amyloid systems in which conformational heterogeneity is often associated with different amyloid morphologies or off-pathway events, conformational heterogeneity in the tetramer seems to be a necessary aspect of Cu(II)-induced amyloid formation by β2m. Moreover, the Cu(II)-free models represent a new advance in our understanding of Cu(II) release in Cu(II)-induced amyloid formation, laying a foundation for further mechanistic studies as well as development of new inhibition strategies.
[Display omitted]
•Characterizing amyloid formation in vitro is complicated by structural heterogeneity.•Multiple conformational isomers of β2m oligomers have been identified by IM-MS.•Preamyloid tetramers are heterogeneous and release Cu(II) for amyloid formation.•Structural models of transformed Cu(II)-free tetramers are derived from modeling.•The structural models allow further studies of mechanisms and inhibitory strategies. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1016/j.jmb.2019.10.030 |