Engineered ChymotrypsiN for Mass Spectrometry-Based Detection of Protein Glycosylation

We have engineered the substrate specificity of chymotrypsin to cleave after Asn by high-throughput screening of large libraries created by comprehensive remodeling of the substrate binding pocket. The engineered variant (chymotrypsiN, ChyB-Asn) demonstrated an altered substrate specificity with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2019-12, Vol.14 (12), p.2616-2628
Hauptverfasser: Ramesh, Balakrishnan, Abnouf, Shaza, Mali, Sujina, Moree, Wilna J, Patil, Ujwal, Bark, Steven J, Varadarajan, Navin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have engineered the substrate specificity of chymotrypsin to cleave after Asn by high-throughput screening of large libraries created by comprehensive remodeling of the substrate binding pocket. The engineered variant (chymotrypsiN, ChyB-Asn) demonstrated an altered substrate specificity with an expanded preference for Asn-containing substrates. We confirmed that protein engineering did not compromise the stability of the enzyme by biophysical characterization. Comparison of wild-type ChyB and ChyB-Asn in profiling lysates of HEK293 cells demonstrated both qualitative and quantitative differences in the nature of the peptides and proteins identified by liquid chromatography and tandem mass spectrometry. ChyB-Asn enabled the identification of partially glycosylated Asn sites within a model glycoprotein and in the extracellular proteome of Jurkat T cells. ChymotrypsiN is a valuable addition to the toolkit of proteases to aid the mapping of N-linked glycosylation sites within proteins and proteomes.
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.9b00506