Dissociating neural learning signals in human sign- and goal-trackers
Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-fr...
Gespeichert in:
Veröffentlicht in: | Nature human behaviour 2020-02, Vol.4 (2), p.201-214 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Nature human behaviour |
container_volume | 4 |
creator | Schad, Daniel J. Rapp, Michael A. Garbusow, Maria Nebe, Stephan Sebold, Miriam Obst, Elisabeth Sommer, Christian Deserno, Lorenz Rabovsky, Milena Friedel, Eva Romanczuk-Seiferth, Nina Wittchen, Hans-Ulrich Zimmermann, Ulrich S. Walter, Henrik Sterzer, Philipp Smolka, Michael N. Schlagenhauf, Florian Heinz, Andreas Dayan, Peter Huys, Quentin J. M. |
description | Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-free phasic dopaminergic reward-prediction errors underlie learning, which renders stimuli ‘wanted’. Goal-trackers do not rely on dopamine for learning and are thought to use model-based learning. We demonstrate this double dissociation in 129 male humans using eye-tracking, pupillometry and functional magnetic resonance imaging informed by computational models of sign- and goal-tracking. We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers instead exhibit a stronger model-based neural state prediction error signal. This model-based construct determines gaze and pupil dilation more in goal-trackers.
Schad et al. find that, during Pavlovian conditioning, model-free striatal reward prediction errors are present in a group of sign-tracking humans, while goal-tracking humans show learning signals from a model-based system instead. |
doi_str_mv | 10.1038/s41562-019-0765-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314010924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357412184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-2fbfb4cbd55f5a50067a9a7a879c5b625af118bf16206f6742d21f8f8009d6323</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EolXpA7CgSCwsBt-djKiUi1SJBWbLSeyQkjjFTgbeHoeUi5CYfOzznf_IHwCnGF1iRNOrwDAXBCKcQSQFh_wAzAnNJKRUssNf9QwsQ9giFEnKMimOwYxiiYkUbA7WN3UIXVHrvnZV4szgdZM0Rns33kNdOd2EpHbJy9Bq9_kAE-3KpOp0A3uvi1fjwwk4spEzy_25AM-366fVPdw83j2srjewoJL0kNjc5qzIS84t1xwhIXWmpU5lVvBcEK4txmlusSBIWCEZKQm2qU0RykpBCV2Aiyl357u3wYRetXUoTNNoZ7ohKEIxQxhlhEX0_A-67QY__iZSXDJMcDpSeKIK34XgjVU7X7favyuM1KhZTZpVlKdGzYrHmbN98pC3pvye-JIaATIBIbZcZfzP6v9TPwDBwIXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357412184</pqid></control><display><type>article</type><title>Dissociating neural learning signals in human sign- and goal-trackers</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Schad, Daniel J. ; Rapp, Michael A. ; Garbusow, Maria ; Nebe, Stephan ; Sebold, Miriam ; Obst, Elisabeth ; Sommer, Christian ; Deserno, Lorenz ; Rabovsky, Milena ; Friedel, Eva ; Romanczuk-Seiferth, Nina ; Wittchen, Hans-Ulrich ; Zimmermann, Ulrich S. ; Walter, Henrik ; Sterzer, Philipp ; Smolka, Michael N. ; Schlagenhauf, Florian ; Heinz, Andreas ; Dayan, Peter ; Huys, Quentin J. M.</creator><creatorcontrib>Schad, Daniel J. ; Rapp, Michael A. ; Garbusow, Maria ; Nebe, Stephan ; Sebold, Miriam ; Obst, Elisabeth ; Sommer, Christian ; Deserno, Lorenz ; Rabovsky, Milena ; Friedel, Eva ; Romanczuk-Seiferth, Nina ; Wittchen, Hans-Ulrich ; Zimmermann, Ulrich S. ; Walter, Henrik ; Sterzer, Philipp ; Smolka, Michael N. ; Schlagenhauf, Florian ; Heinz, Andreas ; Dayan, Peter ; Huys, Quentin J. M.</creatorcontrib><description>Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-free phasic dopaminergic reward-prediction errors underlie learning, which renders stimuli ‘wanted’. Goal-trackers do not rely on dopamine for learning and are thought to use model-based learning. We demonstrate this double dissociation in 129 male humans using eye-tracking, pupillometry and functional magnetic resonance imaging informed by computational models of sign- and goal-tracking. We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers instead exhibit a stronger model-based neural state prediction error signal. This model-based construct determines gaze and pupil dilation more in goal-trackers.
Schad et al. find that, during Pavlovian conditioning, model-free striatal reward prediction errors are present in a group of sign-tracking humans, while goal-tracking humans show learning signals from a model-based system instead.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-019-0765-5</identifier><identifier>PMID: 31712764</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/2396 ; 631/378/1595/1395 ; 631/378/1788 ; 631/477/2811 ; Adult ; Amygdala - diagnostic imaging ; Amygdala - physiology ; Anticipation, Psychological - physiology ; Basal Ganglia - diagnostic imaging ; Basal Ganglia - physiology ; Behavioral Sciences ; Biomedical and Life Sciences ; Brain Mapping ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Classical conditioning ; Conditioning, Classical - physiology ; Cues ; Dissociation ; Dopamine ; Experimental Psychology ; Eye fixation ; Eye Movement Measurements ; Eye tracking ; Fixation, Ocular - physiology ; Functional magnetic resonance imaging ; Goals ; Humans ; Learning ; Life Sciences ; Magnetic Resonance Imaging ; Male ; Mathematical models ; Microeconomics ; Models, Biological ; Neurosciences ; Nucleus Accumbens - diagnostic imaging ; Nucleus Accumbens - physiology ; Objectives ; Parietal Lobe - diagnostic imaging ; Parietal Lobe - physiology ; Personality and Social Psychology ; Prefrontal Cortex - diagnostic imaging ; Prefrontal Cortex - physiology ; Pupil - physiology ; Putamen - diagnostic imaging ; Putamen - physiology ; Reward ; Students ; Tracking ; Young Adult</subject><ispartof>Nature human behaviour, 2020-02, Vol.4 (2), p.201-214</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-2fbfb4cbd55f5a50067a9a7a879c5b625af118bf16206f6742d21f8f8009d6323</citedby><cites>FETCH-LOGICAL-c372t-2fbfb4cbd55f5a50067a9a7a879c5b625af118bf16206f6742d21f8f8009d6323</cites><orcidid>0000-0003-3968-9557 ; 0000-0001-5398-5569 ; 0000-0002-9403-6121 ; 0000-0003-2586-6823 ; 0000-0002-8999-574X ; 0000-0001-7729-1027 ; 0000-0002-6931-269X ; 0000-0003-3476-1839 ; 0000-0003-0106-966X ; 0000-0001-7392-5280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41562-019-0765-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41562-019-0765-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31712764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schad, Daniel J.</creatorcontrib><creatorcontrib>Rapp, Michael A.</creatorcontrib><creatorcontrib>Garbusow, Maria</creatorcontrib><creatorcontrib>Nebe, Stephan</creatorcontrib><creatorcontrib>Sebold, Miriam</creatorcontrib><creatorcontrib>Obst, Elisabeth</creatorcontrib><creatorcontrib>Sommer, Christian</creatorcontrib><creatorcontrib>Deserno, Lorenz</creatorcontrib><creatorcontrib>Rabovsky, Milena</creatorcontrib><creatorcontrib>Friedel, Eva</creatorcontrib><creatorcontrib>Romanczuk-Seiferth, Nina</creatorcontrib><creatorcontrib>Wittchen, Hans-Ulrich</creatorcontrib><creatorcontrib>Zimmermann, Ulrich S.</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Sterzer, Philipp</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Schlagenhauf, Florian</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Dayan, Peter</creatorcontrib><creatorcontrib>Huys, Quentin J. M.</creatorcontrib><title>Dissociating neural learning signals in human sign- and goal-trackers</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><addtitle>Nat Hum Behav</addtitle><description>Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-free phasic dopaminergic reward-prediction errors underlie learning, which renders stimuli ‘wanted’. Goal-trackers do not rely on dopamine for learning and are thought to use model-based learning. We demonstrate this double dissociation in 129 male humans using eye-tracking, pupillometry and functional magnetic resonance imaging informed by computational models of sign- and goal-tracking. We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers instead exhibit a stronger model-based neural state prediction error signal. This model-based construct determines gaze and pupil dilation more in goal-trackers.
Schad et al. find that, during Pavlovian conditioning, model-free striatal reward prediction errors are present in a group of sign-tracking humans, while goal-tracking humans show learning signals from a model-based system instead.</description><subject>631/378/116/2396</subject><subject>631/378/1595/1395</subject><subject>631/378/1788</subject><subject>631/477/2811</subject><subject>Adult</subject><subject>Amygdala - diagnostic imaging</subject><subject>Amygdala - physiology</subject><subject>Anticipation, Psychological - physiology</subject><subject>Basal Ganglia - diagnostic imaging</subject><subject>Basal Ganglia - physiology</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Classical conditioning</subject><subject>Conditioning, Classical - physiology</subject><subject>Cues</subject><subject>Dissociation</subject><subject>Dopamine</subject><subject>Experimental Psychology</subject><subject>Eye fixation</subject><subject>Eye Movement Measurements</subject><subject>Eye tracking</subject><subject>Fixation, Ocular - physiology</subject><subject>Functional magnetic resonance imaging</subject><subject>Goals</subject><subject>Humans</subject><subject>Learning</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Microeconomics</subject><subject>Models, Biological</subject><subject>Neurosciences</subject><subject>Nucleus Accumbens - diagnostic imaging</subject><subject>Nucleus Accumbens - physiology</subject><subject>Objectives</subject><subject>Parietal Lobe - diagnostic imaging</subject><subject>Parietal Lobe - physiology</subject><subject>Personality and Social Psychology</subject><subject>Prefrontal Cortex - diagnostic imaging</subject><subject>Prefrontal Cortex - physiology</subject><subject>Pupil - physiology</subject><subject>Putamen - diagnostic imaging</subject><subject>Putamen - physiology</subject><subject>Reward</subject><subject>Students</subject><subject>Tracking</subject><subject>Young Adult</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLtOwzAUhi0EolXpA7CgSCwsBt-djKiUi1SJBWbLSeyQkjjFTgbeHoeUi5CYfOzznf_IHwCnGF1iRNOrwDAXBCKcQSQFh_wAzAnNJKRUssNf9QwsQ9giFEnKMimOwYxiiYkUbA7WN3UIXVHrvnZV4szgdZM0Rns33kNdOd2EpHbJy9Bq9_kAE-3KpOp0A3uvi1fjwwk4spEzy_25AM-366fVPdw83j2srjewoJL0kNjc5qzIS84t1xwhIXWmpU5lVvBcEK4txmlusSBIWCEZKQm2qU0RykpBCV2Aiyl357u3wYRetXUoTNNoZ7ohKEIxQxhlhEX0_A-67QY__iZSXDJMcDpSeKIK34XgjVU7X7favyuM1KhZTZpVlKdGzYrHmbN98pC3pvye-JIaATIBIbZcZfzP6v9TPwDBwIXx</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Schad, Daniel J.</creator><creator>Rapp, Michael A.</creator><creator>Garbusow, Maria</creator><creator>Nebe, Stephan</creator><creator>Sebold, Miriam</creator><creator>Obst, Elisabeth</creator><creator>Sommer, Christian</creator><creator>Deserno, Lorenz</creator><creator>Rabovsky, Milena</creator><creator>Friedel, Eva</creator><creator>Romanczuk-Seiferth, Nina</creator><creator>Wittchen, Hans-Ulrich</creator><creator>Zimmermann, Ulrich S.</creator><creator>Walter, Henrik</creator><creator>Sterzer, Philipp</creator><creator>Smolka, Michael N.</creator><creator>Schlagenhauf, Florian</creator><creator>Heinz, Andreas</creator><creator>Dayan, Peter</creator><creator>Huys, Quentin J. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>M2M</scope><scope>M2R</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3968-9557</orcidid><orcidid>https://orcid.org/0000-0001-5398-5569</orcidid><orcidid>https://orcid.org/0000-0002-9403-6121</orcidid><orcidid>https://orcid.org/0000-0003-2586-6823</orcidid><orcidid>https://orcid.org/0000-0002-8999-574X</orcidid><orcidid>https://orcid.org/0000-0001-7729-1027</orcidid><orcidid>https://orcid.org/0000-0002-6931-269X</orcidid><orcidid>https://orcid.org/0000-0003-3476-1839</orcidid><orcidid>https://orcid.org/0000-0003-0106-966X</orcidid><orcidid>https://orcid.org/0000-0001-7392-5280</orcidid></search><sort><creationdate>20200201</creationdate><title>Dissociating neural learning signals in human sign- and goal-trackers</title><author>Schad, Daniel J. ; Rapp, Michael A. ; Garbusow, Maria ; Nebe, Stephan ; Sebold, Miriam ; Obst, Elisabeth ; Sommer, Christian ; Deserno, Lorenz ; Rabovsky, Milena ; Friedel, Eva ; Romanczuk-Seiferth, Nina ; Wittchen, Hans-Ulrich ; Zimmermann, Ulrich S. ; Walter, Henrik ; Sterzer, Philipp ; Smolka, Michael N. ; Schlagenhauf, Florian ; Heinz, Andreas ; Dayan, Peter ; Huys, Quentin J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-2fbfb4cbd55f5a50067a9a7a879c5b625af118bf16206f6742d21f8f8009d6323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/116/2396</topic><topic>631/378/1595/1395</topic><topic>631/378/1788</topic><topic>631/477/2811</topic><topic>Adult</topic><topic>Amygdala - diagnostic imaging</topic><topic>Amygdala - physiology</topic><topic>Anticipation, Psychological - physiology</topic><topic>Basal Ganglia - diagnostic imaging</topic><topic>Basal Ganglia - physiology</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Classical conditioning</topic><topic>Conditioning, Classical - physiology</topic><topic>Cues</topic><topic>Dissociation</topic><topic>Dopamine</topic><topic>Experimental Psychology</topic><topic>Eye fixation</topic><topic>Eye Movement Measurements</topic><topic>Eye tracking</topic><topic>Fixation, Ocular - physiology</topic><topic>Functional magnetic resonance imaging</topic><topic>Goals</topic><topic>Humans</topic><topic>Learning</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Microeconomics</topic><topic>Models, Biological</topic><topic>Neurosciences</topic><topic>Nucleus Accumbens - diagnostic imaging</topic><topic>Nucleus Accumbens - physiology</topic><topic>Objectives</topic><topic>Parietal Lobe - diagnostic imaging</topic><topic>Parietal Lobe - physiology</topic><topic>Personality and Social Psychology</topic><topic>Prefrontal Cortex - diagnostic imaging</topic><topic>Prefrontal Cortex - physiology</topic><topic>Pupil - physiology</topic><topic>Putamen - diagnostic imaging</topic><topic>Putamen - physiology</topic><topic>Reward</topic><topic>Students</topic><topic>Tracking</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schad, Daniel J.</creatorcontrib><creatorcontrib>Rapp, Michael A.</creatorcontrib><creatorcontrib>Garbusow, Maria</creatorcontrib><creatorcontrib>Nebe, Stephan</creatorcontrib><creatorcontrib>Sebold, Miriam</creatorcontrib><creatorcontrib>Obst, Elisabeth</creatorcontrib><creatorcontrib>Sommer, Christian</creatorcontrib><creatorcontrib>Deserno, Lorenz</creatorcontrib><creatorcontrib>Rabovsky, Milena</creatorcontrib><creatorcontrib>Friedel, Eva</creatorcontrib><creatorcontrib>Romanczuk-Seiferth, Nina</creatorcontrib><creatorcontrib>Wittchen, Hans-Ulrich</creatorcontrib><creatorcontrib>Zimmermann, Ulrich S.</creatorcontrib><creatorcontrib>Walter, Henrik</creatorcontrib><creatorcontrib>Sterzer, Philipp</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Schlagenhauf, Florian</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Dayan, Peter</creatorcontrib><creatorcontrib>Huys, Quentin J. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schad, Daniel J.</au><au>Rapp, Michael A.</au><au>Garbusow, Maria</au><au>Nebe, Stephan</au><au>Sebold, Miriam</au><au>Obst, Elisabeth</au><au>Sommer, Christian</au><au>Deserno, Lorenz</au><au>Rabovsky, Milena</au><au>Friedel, Eva</au><au>Romanczuk-Seiferth, Nina</au><au>Wittchen, Hans-Ulrich</au><au>Zimmermann, Ulrich S.</au><au>Walter, Henrik</au><au>Sterzer, Philipp</au><au>Smolka, Michael N.</au><au>Schlagenhauf, Florian</au><au>Heinz, Andreas</au><au>Dayan, Peter</au><au>Huys, Quentin J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociating neural learning signals in human sign- and goal-trackers</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><addtitle>Nat Hum Behav</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>4</volume><issue>2</issue><spage>201</spage><epage>214</epage><pages>201-214</pages><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-free phasic dopaminergic reward-prediction errors underlie learning, which renders stimuli ‘wanted’. Goal-trackers do not rely on dopamine for learning and are thought to use model-based learning. We demonstrate this double dissociation in 129 male humans using eye-tracking, pupillometry and functional magnetic resonance imaging informed by computational models of sign- and goal-tracking. We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers instead exhibit a stronger model-based neural state prediction error signal. This model-based construct determines gaze and pupil dilation more in goal-trackers.
Schad et al. find that, during Pavlovian conditioning, model-free striatal reward prediction errors are present in a group of sign-tracking humans, while goal-tracking humans show learning signals from a model-based system instead.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31712764</pmid><doi>10.1038/s41562-019-0765-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3968-9557</orcidid><orcidid>https://orcid.org/0000-0001-5398-5569</orcidid><orcidid>https://orcid.org/0000-0002-9403-6121</orcidid><orcidid>https://orcid.org/0000-0003-2586-6823</orcidid><orcidid>https://orcid.org/0000-0002-8999-574X</orcidid><orcidid>https://orcid.org/0000-0001-7729-1027</orcidid><orcidid>https://orcid.org/0000-0002-6931-269X</orcidid><orcidid>https://orcid.org/0000-0003-3476-1839</orcidid><orcidid>https://orcid.org/0000-0003-0106-966X</orcidid><orcidid>https://orcid.org/0000-0001-7392-5280</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3374 |
ispartof | Nature human behaviour, 2020-02, Vol.4 (2), p.201-214 |
issn | 2397-3374 2397-3374 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314010924 |
source | MEDLINE; Nature; SpringerNature Journals |
subjects | 631/378/116/2396 631/378/1595/1395 631/378/1788 631/477/2811 Adult Amygdala - diagnostic imaging Amygdala - physiology Anticipation, Psychological - physiology Basal Ganglia - diagnostic imaging Basal Ganglia - physiology Behavioral Sciences Biomedical and Life Sciences Brain Mapping Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Classical conditioning Conditioning, Classical - physiology Cues Dissociation Dopamine Experimental Psychology Eye fixation Eye Movement Measurements Eye tracking Fixation, Ocular - physiology Functional magnetic resonance imaging Goals Humans Learning Life Sciences Magnetic Resonance Imaging Male Mathematical models Microeconomics Models, Biological Neurosciences Nucleus Accumbens - diagnostic imaging Nucleus Accumbens - physiology Objectives Parietal Lobe - diagnostic imaging Parietal Lobe - physiology Personality and Social Psychology Prefrontal Cortex - diagnostic imaging Prefrontal Cortex - physiology Pupil - physiology Putamen - diagnostic imaging Putamen - physiology Reward Students Tracking Young Adult |
title | Dissociating neural learning signals in human sign- and goal-trackers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociating%20neural%20learning%20signals%20in%20human%20sign-%20and%20goal-trackers&rft.jtitle=Nature%20human%20behaviour&rft.au=Schad,%20Daniel%20J.&rft.date=2020-02-01&rft.volume=4&rft.issue=2&rft.spage=201&rft.epage=214&rft.pages=201-214&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-019-0765-5&rft_dat=%3Cproquest_cross%3E2357412184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357412184&rft_id=info:pmid/31712764&rfr_iscdi=true |