Dissociating neural learning signals in human sign- and goal-trackers
Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-fr...
Gespeichert in:
Veröffentlicht in: | Nature human behaviour 2020-02, Vol.4 (2), p.201-214 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-free phasic dopaminergic reward-prediction errors underlie learning, which renders stimuli ‘wanted’. Goal-trackers do not rely on dopamine for learning and are thought to use model-based learning. We demonstrate this double dissociation in 129 male humans using eye-tracking, pupillometry and functional magnetic resonance imaging informed by computational models of sign- and goal-tracking. We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers instead exhibit a stronger model-based neural state prediction error signal. This model-based construct determines gaze and pupil dilation more in goal-trackers.
Schad et al. find that, during Pavlovian conditioning, model-free striatal reward prediction errors are present in a group of sign-tracking humans, while goal-tracking humans show learning signals from a model-based system instead. |
---|---|
ISSN: | 2397-3374 2397-3374 |
DOI: | 10.1038/s41562-019-0765-5 |