Intrinsic 2D Ferromagnetism in V5Se8 Epitaxial Thin Films
The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Currently, a variety of 2D ferromagnetism...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-12, Vol.19 (12), p.8806-8810 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Currently, a variety of 2D ferromagnetism has been explored mainly by mechanically exfoliating “originally ferromagnetic (FM)” van der Waals crystals, while a bottom-up approach by thin-film growth technique has demonstrated emergent 2D ferromagnetism in a variety of “originally non-FM” van der Waals materials. Here we demonstrate that V5Se8 epitaxial thin films grown by molecular-beam epitaxy exhibit emergent 2D ferromagnetism with intrinsic spin polarization of the V 3d electrons despite that the bulk counterpart is “originally antiferromagnetic”. Moreover, thickness-dependence measurements reveal that this newly developed 2D ferromagnet could be classified as an itinerant 2D Heisenberg ferromagnet with weak magnetic anisotropy, broadening a lineup of 2D magnets to those potentially beneficial for future spintronics applications. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b03614 |