Knowing Me, Knowing You: Anal Gland Secretion of European Badgers (Meles meles) Codes for Individuality, Sex and Social Group Membership

European badgers, Meles meles , are group-living in the UK, and demarcate their ranges with shared latrines. As carnivores, badgers possess paired anal glands, but olfactory information on the content of badger anal gland secretion (AGS) is largely uninvestigated. Here, we examined the volatile orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2019-10, Vol.45 (10), p.823-837
Hauptverfasser: Noonan, Michael J., Tinnesand, Helga V., Müller, Carsten T., Rosell, Frank, Macdonald, David W., Buesching, Christina D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:European badgers, Meles meles , are group-living in the UK, and demarcate their ranges with shared latrines. As carnivores, badgers possess paired anal glands, but olfactory information on the content of badger anal gland secretion (AGS) is largely uninvestigated. Here, we examined the volatile organic compounds (VOCs) of AGS samples from 57 free-living badgers using solid-phase microextraction (SPME) and gas chromatography—mass spectrometry. AGS was rich in alkanes (C7–C15, 14.3% of identified compounds), aldehydes (C5–C14, 9.7%), phenols (C6–C15, 9.5%), alcohols (C5–C10, 7.3%), aromatic hydrocarbons (C6–C13, 6.8%), ketones (C6–C13, 6.3%) and carboxylic acids (C3–C12, 5.6%) and contained a variety of esters, sulfurous and nitrogenous compounds, and ethers. The number of VOCs per profile ranged from 20 to 111 (mean = 65.4; ± 22.7 SD ), but no compound was unique for any of the biological categories. After normalization of the raw data using Probabilistic Quotient Normalization, we produced a resemblance matrix by calculating the Euclidian distances between all sample pairs. PERMANOVA revealed that AGS composition differs between social groups, and concentration and complexity in terms of number of measurable VOCs varies between seasons and years. AGS VOC profiles encode individual identity, sex and vary with female reproductive state, indicating an important function in intraspecific communication. Because AGS is excreted together with fecal deposits, we conclude that chemical complexity of AGS enables particularly latrine-using species, such as badgers, to advertise more complex individual-specific information than in feces alone.
ISSN:0098-0331
1573-1561
DOI:10.1007/s10886-019-01113-0