Convergence of Galerkin approximations for the Korteweg-de Vries equation
Standard Galerkin approximations, using smooth splines on a uniform mesh, to 1-periodic solutions of the Korteweg-de Vries equation are analyzed. Optimal rate of convergence estimates are obtained for both semidiscrete and second order in time fully discrete schemes. At each time level, the resultin...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 1983-04, Vol.40 (162), p.419-433 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Standard Galerkin approximations, using smooth splines on a uniform mesh, to 1-periodic solutions of the Korteweg-de Vries equation are analyzed. Optimal rate of convergence estimates are obtained for both semidiscrete and second order in time fully discrete schemes. At each time level, the resulting system of nonlinear equations can be solved by Newton's method. It is shown that if a proper extrapolation is used as a starting value, then only one step of the Newton iteration is required. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/S0025-5718-1983-0689464-4 |