miRNA-Mediated Suppression of a Cardioprotective Cardiokine as a Novel Mechanism Exacerbating Post-MI Remodeling by Sleep Breathing Disorders
Obstructive sleep apnea-hypopnea syndrome, a sleep breathing disorder in which chronic intermittent hypoxia (CIH) is the primary pathology, is associated with multiple cardiovascular diseases. However, whether and how CIH may affect cardiac remodeling following myocardial infarction (MI) remains unk...
Gespeichert in:
Veröffentlicht in: | Circulation research 2020-01, Vol.126 (2), p.212-228 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Obstructive sleep apnea-hypopnea syndrome, a sleep breathing disorder in which chronic intermittent hypoxia (CIH) is the primary pathology, is associated with multiple cardiovascular diseases. However, whether and how CIH may affect cardiac remodeling following myocardial infarction (MI) remains unknown.
To determine whether CIH exposure at different periods of MI may exacerbate post-MI heart failure and to identify the mechanisms underlying CIH-exacerbated post-MI remodeling.
Adult male mice were subjected to MI (4 weeks) with and without CIH (4 or 8 weeks). CIH before MI (CIH+MI) had no significant effect on post-MI remodeling. However, double CIH exposure (CIH+MI+CIH) or CIH only during the MI period (MI+CIH) significantly exacerbated pathological remodeling and reduced survival rate. Mechanistically, CIH activated TGF-β (tumor growth factor-β)/Smad (homologs of both the Drosophila protein MAD and the C. elegans protein SMA) signaling and enhanced cardiac epithelial to mesenchymal transition, markedly increasing post-MI cardiac fibrosis. Transcriptome analysis revealed that, among 15 genes significantly downregulated (MI+CIH versus MI),
(a novel cardioprotective cardiokine) was one of the most significantly inhibited genes. Real-time polymerase chain reaction/Western analysis confirmed that cardiomyocyte CTRP9 expression was significantly reduced in MI+CIH mice. RNA-sequencing, real-time polymerase chain reaction, and dual-luciferase reporter assays identified that microRNA-214-3p is a novel
targeting miRNA. Its upregulation is responsible for
gene suppression in MI+CIH. Finally, AAV9 (adeno-associated virus 9)-mediated cardiac-specific CTRP9 overexpression or rCTRP9 (recombinated CTRP9) administration inhibited TGF-β/Smad and Wnt/β-catenin pathways, attenuated interstitial fibrosis, improved cardiac function, and enhanced survival rate in MI+CIH animals.
This study provides the first evidence that MI+CIH upregulates miR-214-3p, suppresses cardiac CTRP9 (C1q tumor necrosis factor-related protein-9) expression, and exacerbates cardiac remodeling, suggesting that CTRP9 may be a novel therapeutic target against pathological remodeling in MI patients with obstructive sleep apnea-hypopnea syndrome. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/CIRCRESAHA.119.315067 |