Multiview Uncorrelated Locality Preserving Projection

Canonical Correlation Analysis (CCA) is a popular multiview dimension reduction method, which aims to maximize the correlation between two views to find the common subspace shared by these two views. However, it can only deal with two-view data, while the number of views frequently exceeds two in ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-09, Vol.31 (9), p.3442-3455
Hauptverfasser: Yin, Jun, Sun, Shiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Canonical Correlation Analysis (CCA) is a popular multiview dimension reduction method, which aims to maximize the correlation between two views to find the common subspace shared by these two views. However, it can only deal with two-view data, while the number of views frequently exceeds two in many real applications. To handle data with more than two views, in the previous studies, either the pairwise correlation or the high-order correlation was employed. These two types of correlation define the relation of multiview data from different viewpoints, and both have special effects for view consistency. To obtain flexible view consistency, in this article, we propose multiview uncorrelated locality preserving projection (MULPP), which considers two types of correlation simultaneously. The MULPP also considers the complementary property of different views by preserving the local structures of all the views. To obtain multiple projections and minimize the redundancy of low-dimensional features, for each view, the MULPP makes the features extracted by different projections uncorrelated. The MULPP is solved by an iteration algorithm, and the convergence of the algorithm is proven. The experiments on Multiple Feature, Coil-100, 3Sources, and NUS-WIDE data sets demonstrate the effectiveness of MULPP.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2019.2944664