Shaping the heart: Structural and functional maturation of iPSC-cardiomyocytes in 3D-micro-scaffolds
Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) represent the best cell source for cardiac regenerative purposes but retain an immature phenotype after differentiation with significant limitations compared to adult cardiomyocytes. Apart from an incomplete cardiomyocyte-specific...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2020-01, Vol.227, p.119551-119551, Article 119551 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) represent the best cell source for cardiac regenerative purposes but retain an immature phenotype after differentiation with significant limitations compared to adult cardiomyocytes. Apart from an incomplete cardiomyocyte-specific structure and microarchitecture, cells show at the level of Ca2+ signaling only slow Ca2+ release and reuptake properties. Here, we investigated the effect of restructuring single iPSC-CMs in specially designed 3D-micro-scaffolds on cell morphology and Ca2+ handling. Using direct laser writing, rectangular-shaped scaffolds were produced and single iPSC-CMs were seeded into these forms. Structural analyses revealed strong sarcolemmal remodeling processes and myofilament reorientation in 3D-shaped cells leading to enhanced clustered expression of L-type Ca2+ channels and ryanodine receptors and consequently, to faster Ca2+ transient kinetics. Spontaneous beating activity was enhanced and Ca2+ handling was more robust compared to non-patterned cells. Overall, our data demonstrate for the first time significant improvement of Ca2+ signaling properties in reshaped iPSC-CMs indicative of functional maturation by structural remodeling. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2019.119551 |