Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly
[Display omitted] Inspired by the mussel adhesion mechanism, plant polyphenol tannic acid (TA) with abundant catechol groups and hydrophilic Jeffamine (JA) containing amino groups were used in a layer-by-layer (LBL) process to fabricate composite nanofiltration (NF) membranes in this study. Alternat...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2020-02, Vol.560, p.273-283 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Inspired by the mussel adhesion mechanism, plant polyphenol tannic acid (TA) with abundant catechol groups and hydrophilic Jeffamine (JA) containing amino groups were used in a layer-by-layer (LBL) process to fabricate composite nanofiltration (NF) membranes in this study. Alternately immersing a polyacrylonitrile substrate into individual TA and JA buffer solutions could readily construct a NF membrane selective layer without any pre-treatment to the substrate. The optimised membrane showed a high pure water permeance of 37 L m−2 h−1 bar−1 whilst maintaining rejections higher than 90% towards various dyes with molecular weights ranging from 269 to 1017 g mol−1. Particularly, the obtained membrane exhibited excellent anti-fouling and long-term performance attributed to the hydrophilic membrane surface and covalent bonds in the selective layer. The novel strategy inherited the advantages of a mussel-inspired dopamine material but overcame its disadvantages. The results disclosed in this study not only provide a novel strategy to prepare composite NF membranes, but also facilitate the mussel-inspired LBL design of advanced materials for environmental applications. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2019.10.078 |