Context-dependent roles of complement in cancer
The tumour microenvironment (TME) highly influences the growth and spread of tumours, thus impacting the patient’s clinical outcome. In this context, the complement system plays a major and complex role. It may either act to kill antibody-coated tumour cells, support local chronic inflammation or ha...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Cancer 2019-12, Vol.19 (12), p.698-715 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tumour microenvironment (TME) highly influences the growth and spread of tumours, thus impacting the patient’s clinical outcome. In this context, the complement system plays a major and complex role. It may either act to kill antibody-coated tumour cells, support local chronic inflammation or hamper antitumour T cell responses favouring tumour progression. Recent studies demonstrate that these opposing effects are dependent upon the sites of complement activation, the composition of the TME and the tumour cell sensitivity to complement attack. In this Review, we present the evidence that has so far accrued showing a role for complement activation and its effects on cancer control and clinical outcome under different TME contexts. We also include a new analysis of the publicly available transcriptomic data to provide an overview of the prognostic value of complement gene expression in 30 cancer types. We argue that the interplay of complement components within each cancer type is unique, governed by the properties of the tumour cells and the TME. This concept is of critical importance for the design of efficient therapeutic strategies aimed at targeting complement components and their signalling.
This Review discusses the complex and context-dependent role of the complement system in cancer, highlighting the opposing effects of complement activation in both promoting and restraining tumour progression. A novel analysis of publicly available transcriptomic data to provide an overview of the prognostic value of complement gene expression in cancer is also included. |
---|---|
ISSN: | 1474-175X 1474-1768 |
DOI: | 10.1038/s41568-019-0210-0 |