Effects of spastic cerebral palsy on multi-finger coordination during isometric force production tasks
In this study, we quantified changes in finger interdependence (enslaving), multi-finger synergies, and feedforward modulation of synergy properties (i.e., anticipatory synergy adjustment) during single- and multi-finger force production tasks in individuals with cerebral palsy (CP). Spastic diplegi...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2019-12, Vol.237 (12), p.3281-3295 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we quantified changes in finger interdependence (enslaving), multi-finger synergies, and feedforward modulation of synergy properties (i.e., anticipatory synergy adjustment) during single- and multi-finger force production tasks in individuals with cerebral palsy (CP). Spastic diplegic CP and healthy control subjects performed sets of finger force production tasks by each of the hands, including maximal force production and submaximal quick pulse force production in an isometric condition. The framework of the uncontrolled manifold hypothesis was used to quantify the indices of multi-finger synergies and the anticipatory synergy adjustment (ASA). The CP group showed lower maximal forces and higher indices of finger interdependence (enslaving), while the indices of multi-finger synergies stabilizing total finger forces during stable force production were not different significantly compared to the controls. Further, the time of ASA for the CP group was not delayed. The CP group showed a significantly less drop in the synergy indices during the anticipatory and quick pulse phase compared to the control group, which was accompanied by larger co-contraction indices of the forearm muscles. These findings suggest that the function of assembling motor synergies for stable force production is not affected by CP, while the ability to modulate synergy properties may be impaired with CP partially due to spasticity. The spasticity presumably hampers the purposeful feedforward destabilization of the performance. The results suggest that quantification of multi-digit synergies may provide an alternative tool for quantitative assessment of impaired coordination in the CP individuals. |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-019-05671-3 |