Structural and Chemical Evolution of l-Cysteine Nanofilm on Si(111)-√3×√3-Ag: From Preferential Growth at Step Edges and Antiphase Boundaries at Room Temperature to Adsorbate-Mediated Metal Cluster Formation at Elevated Temperature

The interaction of cysteine molecules with the Si(111)-√3×√3-Ag surface has been investigated over the submonolayer to multilayer regime using X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. With both upper step and lower step terraces, st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-12, Vol.35 (49), p.16185-16200
Hauptverfasser: Farkhondeh, Hanieh, Rahsepar, Fatemeh R, Zhang, Lei, Leung, Kam Tong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction of cysteine molecules with the Si(111)-√3×√3-Ag surface has been investigated over the submonolayer to multilayer regime using X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. With both upper step and lower step terraces, step edges, and antiphase boundaries, the √3×√3-Ag overlayer supported on Si(111) provides a rich two-dimensional template for studying site-specific biomolecular interactions. As an amino acid with three functional groups, cysteine is found to chemisorb through S−H bond cleavage and S−Ag bond linkage first at step edges and antiphase boundaries followed by island formation and expanded growth onto terraces. Intermolecular interactions are dominated by zwitterionic hydrogen bonding at higher coverages, producing a porous unordered interfacial layer composed of cysteine agglomerates at room temperature. Upon annealing, cysteine adsorbates induce structural transformation of the uniform √3×√3-Ag reconstructed surface lattice into metallic Ag clusters with a narrow size distribution and short-range ordering. Preferential nanoaggregate formation of cysteine at defect sites and cysteine-induced metal cluster formation promise a new approach to fabricating nanoclusters for potential applications in chemical sensing and catalysis.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.9b02852