Monte Carlo investigation of electron specific energy distribution in a single cell model

Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation and environmental biophysics 2020-03, Vol.59 (1), p.161-171
Hauptverfasser: Markovic, V. M., Stevanovic, N., Nikezic, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 1
container_start_page 161
container_title Radiation and environmental biophysics
container_volume 59
creator Markovic, V. M.
Stevanovic, N.
Nikezic, D.
description Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment. The aim of this paper is to establish an applicable method to determine microdosimetric quantities for various radionuclides. The established method is based on knowledge of microdosimetric quantities of monoenergetic electrons. In this paper these quantities are determined for the single-cell model for a range of electron energies up to 2.3 MeV , using the Monte Carlo transport code PENELOPE. The results show that using monoenergetic specific energies, reconstruction of the specific energy of beta-emitting radionuclides can be successfully done with very high accuracy. Microdosimetric quantities share information about the physical processes involved and give insight about energy depositions, which is of use in the procedure of radionuclide selection for a given type of therapy.
doi_str_mv 10.1007/s00411-019-00815-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2310296450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353364074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-812c0bd4fe9856e51feeba3995e563c51facc119101478102c73254619bd9f83</originalsourceid><addsrcrecordid>eNp9kM1P3DAQxa2qFWyBf6CHylIvvaTMxB-Jj2hFPyQQFw7lZCXOZGWUtRc7qQR_PYalIPXQ03jk33vz9Bj7hPANAZrTDCARK0BTAbSoqod3bIVS1FUNxrxnKxCAlRby9yH7mPMtADZamwN2KFArI4VcsZvLGGbi6y5Nkfvwh_LsN93sY-Bx5DSRm1N55x05P3rHKVDa3PPB5zn5fnkGfeAdzz5sJuKOpolv40DTMfswdlOmk5d5xK6_n1-vf1YXVz9-rc8uKicaNVct1g76QY5kWqVJ4UjUd8IYRUoLV_bOOUSDgLJpEWrXiFpJjaYfzNiKI_Z1b7tL8W4p8e3W56cUXaC4ZFuLojFaKijol3_Q27ikUMIVSgmhJTSyUPWecinmnGi0u-S3Xbq3CPapd7vv3Zbe7XPv9qGIPr9YL_2WhlfJ36ILIPZALl9hQ-nt9n9sHwH99Y3H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353364074</pqid></control><display><type>article</type><title>Monte Carlo investigation of electron specific energy distribution in a single cell model</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Markovic, V. M. ; Stevanovic, N. ; Nikezic, D.</creator><creatorcontrib>Markovic, V. M. ; Stevanovic, N. ; Nikezic, D.</creatorcontrib><description>Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment. The aim of this paper is to establish an applicable method to determine microdosimetric quantities for various radionuclides. The established method is based on knowledge of microdosimetric quantities of monoenergetic electrons. In this paper these quantities are determined for the single-cell model for a range of electron energies up to 2.3 MeV , using the Monte Carlo transport code PENELOPE. The results show that using monoenergetic specific energies, reconstruction of the specific energy of beta-emitting radionuclides can be successfully done with very high accuracy. Microdosimetric quantities share information about the physical processes involved and give insight about energy depositions, which is of use in the procedure of radionuclide selection for a given type of therapy.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-019-00815-z</identifier><identifier>PMID: 31659434</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Beta Particles ; Biological and Medical Physics ; Biophysics ; Computer simulation ; Ecosystems ; Effects of Radiation/Radiation Protection ; Electrons ; Energy ; Energy distribution ; Environmental Physics ; Information processing ; Monitoring/Environmental Analysis ; Monte Carlo Method ; Original Article ; Physics ; Physics and Astronomy ; Radioisotopes ; Radiometry ; Single-Cell Analysis ; Specific energy ; Tumors</subject><ispartof>Radiation and environmental biophysics, 2020-03, Vol.59 (1), p.161-171</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Radiation and Environmental Biophysics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-812c0bd4fe9856e51feeba3995e563c51facc119101478102c73254619bd9f83</citedby><cites>FETCH-LOGICAL-c375t-812c0bd4fe9856e51feeba3995e563c51facc119101478102c73254619bd9f83</cites><orcidid>0000-0002-5566-8169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00411-019-00815-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00411-019-00815-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Markovic, V. M.</creatorcontrib><creatorcontrib>Stevanovic, N.</creatorcontrib><creatorcontrib>Nikezic, D.</creatorcontrib><title>Monte Carlo investigation of electron specific energy distribution in a single cell model</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><addtitle>Radiat Environ Biophys</addtitle><description>Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment. The aim of this paper is to establish an applicable method to determine microdosimetric quantities for various radionuclides. The established method is based on knowledge of microdosimetric quantities of monoenergetic electrons. In this paper these quantities are determined for the single-cell model for a range of electron energies up to 2.3 MeV , using the Monte Carlo transport code PENELOPE. The results show that using monoenergetic specific energies, reconstruction of the specific energy of beta-emitting radionuclides can be successfully done with very high accuracy. Microdosimetric quantities share information about the physical processes involved and give insight about energy depositions, which is of use in the procedure of radionuclide selection for a given type of therapy.</description><subject>Beta Particles</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Computer simulation</subject><subject>Ecosystems</subject><subject>Effects of Radiation/Radiation Protection</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy distribution</subject><subject>Environmental Physics</subject><subject>Information processing</subject><subject>Monitoring/Environmental Analysis</subject><subject>Monte Carlo Method</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radioisotopes</subject><subject>Radiometry</subject><subject>Single-Cell Analysis</subject><subject>Specific energy</subject><subject>Tumors</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1P3DAQxa2qFWyBf6CHylIvvaTMxB-Jj2hFPyQQFw7lZCXOZGWUtRc7qQR_PYalIPXQ03jk33vz9Bj7hPANAZrTDCARK0BTAbSoqod3bIVS1FUNxrxnKxCAlRby9yH7mPMtADZamwN2KFArI4VcsZvLGGbi6y5Nkfvwh_LsN93sY-Bx5DSRm1N55x05P3rHKVDa3PPB5zn5fnkGfeAdzz5sJuKOpolv40DTMfswdlOmk5d5xK6_n1-vf1YXVz9-rc8uKicaNVct1g76QY5kWqVJ4UjUd8IYRUoLV_bOOUSDgLJpEWrXiFpJjaYfzNiKI_Z1b7tL8W4p8e3W56cUXaC4ZFuLojFaKijol3_Q27ikUMIVSgmhJTSyUPWecinmnGi0u-S3Xbq3CPapd7vv3Zbe7XPv9qGIPr9YL_2WhlfJ36ILIPZALl9hQ-nt9n9sHwH99Y3H</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Markovic, V. M.</creator><creator>Stevanovic, N.</creator><creator>Nikezic, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5566-8169</orcidid></search><sort><creationdate>20200301</creationdate><title>Monte Carlo investigation of electron specific energy distribution in a single cell model</title><author>Markovic, V. M. ; Stevanovic, N. ; Nikezic, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-812c0bd4fe9856e51feeba3995e563c51facc119101478102c73254619bd9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beta Particles</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Computer simulation</topic><topic>Ecosystems</topic><topic>Effects of Radiation/Radiation Protection</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy distribution</topic><topic>Environmental Physics</topic><topic>Information processing</topic><topic>Monitoring/Environmental Analysis</topic><topic>Monte Carlo Method</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radioisotopes</topic><topic>Radiometry</topic><topic>Single-Cell Analysis</topic><topic>Specific energy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markovic, V. M.</creatorcontrib><creatorcontrib>Stevanovic, N.</creatorcontrib><creatorcontrib>Nikezic, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markovic, V. M.</au><au>Stevanovic, N.</au><au>Nikezic, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo investigation of electron specific energy distribution in a single cell model</atitle><jtitle>Radiation and environmental biophysics</jtitle><stitle>Radiat Environ Biophys</stitle><addtitle>Radiat Environ Biophys</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>59</volume><issue>1</issue><spage>161</spage><epage>171</epage><pages>161-171</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment. The aim of this paper is to establish an applicable method to determine microdosimetric quantities for various radionuclides. The established method is based on knowledge of microdosimetric quantities of monoenergetic electrons. In this paper these quantities are determined for the single-cell model for a range of electron energies up to 2.3 MeV , using the Monte Carlo transport code PENELOPE. The results show that using monoenergetic specific energies, reconstruction of the specific energy of beta-emitting radionuclides can be successfully done with very high accuracy. Microdosimetric quantities share information about the physical processes involved and give insight about energy depositions, which is of use in the procedure of radionuclide selection for a given type of therapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31659434</pmid><doi>10.1007/s00411-019-00815-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5566-8169</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-634X
ispartof Radiation and environmental biophysics, 2020-03, Vol.59 (1), p.161-171
issn 0301-634X
1432-2099
language eng
recordid cdi_proquest_miscellaneous_2310296450
source MEDLINE; SpringerNature Journals
subjects Beta Particles
Biological and Medical Physics
Biophysics
Computer simulation
Ecosystems
Effects of Radiation/Radiation Protection
Electrons
Energy
Energy distribution
Environmental Physics
Information processing
Monitoring/Environmental Analysis
Monte Carlo Method
Original Article
Physics
Physics and Astronomy
Radioisotopes
Radiometry
Single-Cell Analysis
Specific energy
Tumors
title Monte Carlo investigation of electron specific energy distribution in a single cell model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20investigation%20of%20electron%20specific%20energy%20distribution%20in%20a%20single%20cell%20model&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Markovic,%20V.%20M.&rft.date=2020-03-01&rft.volume=59&rft.issue=1&rft.spage=161&rft.epage=171&rft.pages=161-171&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-019-00815-z&rft_dat=%3Cproquest_cross%3E2353364074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353364074&rft_id=info:pmid/31659434&rfr_iscdi=true