Monte Carlo investigation of electron specific energy distribution in a single cell model

Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation and environmental biophysics 2020-03, Vol.59 (1), p.161-171
Hauptverfasser: Markovic, V. M., Stevanovic, N., Nikezic, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment. The aim of this paper is to establish an applicable method to determine microdosimetric quantities for various radionuclides. The established method is based on knowledge of microdosimetric quantities of monoenergetic electrons. In this paper these quantities are determined for the single-cell model for a range of electron energies up to 2.3 MeV , using the Monte Carlo transport code PENELOPE. The results show that using monoenergetic specific energies, reconstruction of the specific energy of beta-emitting radionuclides can be successfully done with very high accuracy. Microdosimetric quantities share information about the physical processes involved and give insight about energy depositions, which is of use in the procedure of radionuclide selection for a given type of therapy.
ISSN:0301-634X
1432-2099
DOI:10.1007/s00411-019-00815-z