Observation of Anisotropic Strain-Wave Dynamics and Few-Layer Dephasing in MoS2 with Ultrafast Electron Microscopy
The large elastic strains that can be sustained by transition metal dichalcogenides (TMDs), and the sensitivity of electronic properties to that strain, make these materials attractive targets for tunable optoelectronic devices. Defects have also been shown to influence the optical and electronic pr...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-11, Vol.19 (11), p.8216-8224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The large elastic strains that can be sustained by transition metal dichalcogenides (TMDs), and the sensitivity of electronic properties to that strain, make these materials attractive targets for tunable optoelectronic devices. Defects have also been shown to influence the optical and electronic properties, characteristics that are especially important to understand for applications requiring high precision and sensitivity. Importantly, photoexcitation of TMDs is known to generate transient strain effects but the associated intralayer and interlayer low-frequency (tens of GHz) acoustic-phonon modes are largely unexplored, especially in relation to defects common to such materials. Here, with femtosecond electron imaging in an ultrafast electron microscope (UEM), we directly observe distinct photoexcited strain-wave dynamics specific to both the ab basal planes and the principal c-axis crystallographic stacking direction in multilayer 2H-MoS2, and we elucidate the microscopic interconnectedness of these modes to one another and to discrete defects, such as few-layer crystal step edges. By probing 3D structural information within a nanometer–picosecond 2D projected UEM image series, we were able to observe the excitation and evolution of both modes simultaneously. In this way, we found evidence of a delay between mode excitations; initiation of the interlayer (c-axis) strain-wave mode precedes the intralayer (ab plane) mode by 2.4 ps. Further, the intralayer mode is preferentially excited at free basal-plane edges, thus suggesting the initial impulsive structural changes along the c-axis direction and the increased freedom of motion of the MoS2 layer edges at terraces and step edges combine to launch in-plane strain waves at the longitudinal speed of sound (here observed to be 7.8 nm/ps). Sensitivity of the c-axis mode to layer number is observed through direct imaging of a picosecond spatiotemporal dephasing of the lattice oscillation in discrete crystal regions separated by a step edge consisting of four MoS2 layers. These results uncover new insights into the fundamental nanoscale structural responses of layered materials to ultrafast photoexcitation and illustrate the influence defects common to these materials have on behaviors that may impact the emergent optoelectronic properties. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b03596 |