Li[LiCs2Cl][Ga3S6]: A Nanoporous Framework of GaS4 Tetrahedra with Excellent Nonlinear Optical Performance
A large nonlinear optical (NLO) coefficient and a wide band gap are two crucial but contradictory parameters that are difficult to achieve simultaneously in a single infrared (IR) NLO compound. A salt‐inclusion chalcogenide (SIC), Li[LiCs2Cl][Ga3S6] (1), was prepared that presents a nanosized tunnel...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-03, Vol.59 (12), p.4856-4859 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A large nonlinear optical (NLO) coefficient and a wide band gap are two crucial but contradictory parameters that are difficult to achieve simultaneously in a single infrared (IR) NLO compound. A salt‐inclusion chalcogenide (SIC), Li[LiCs2Cl][Ga3S6] (1), was prepared that presents a nanosized tunnel framework constructed from monotype chalcogenide tetrahedra. Highly oriented covalent GaS4 tetrahedra in the host lead to a moderate second harmonic generation response (0.7 AgGaS2), and ionic guests effectively broaden the band gap to the widest value (4.18 eV) among all IR NLO chalcogenides, thereby achieving a remarkable balance between NLO efficiency and band gap.
The salt‐inclusion chalcogenide Li[LiCs2Cl][Ga3S6] is presented, which features a 3D framework composed of [Ga3S6] nanosized tunnels. Introduction of an ionic guest to the covalent chalcogenide host produces a material with a moderate nonlinear optical (NLO) coefficient and an ultrawide band gap (Eg). These characteristics are promising for the development of infrared (IR) NLO materials. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201912416 |