Applying Machine Learning Techniques in Nomogram Prediction and Analysis for SMILE Treatment
To analyze the outcome of machine learning technique for prediction of small incision lenticule extraction (SMILE) nomogram. Prospective, comparative clinical study. A comparative study was conducted on the outcomes of SMILE surgery between surgeon group (nomogram set by surgeon) and machine learnin...
Gespeichert in:
Veröffentlicht in: | American journal of ophthalmology 2020-02, Vol.210, p.71-77 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To analyze the outcome of machine learning technique for prediction of small incision lenticule extraction (SMILE) nomogram.
Prospective, comparative clinical study.
A comparative study was conducted on the outcomes of SMILE surgery between surgeon group (nomogram set by surgeon) and machine learning group (nomogram predicted by machine learning model). The machine learning model was trained by 865 ideal cases (spherical equivalent [SE] within ±0.5 diopter [D] 3 months postoperatively) from an experienced surgeon. The visual outcomes of both groups were compared for safety, efficacy, predictability, and SE correction.
There was no statistically significant difference between the baseline data in both groups. The efficacy index in the machine learning group (1.48 ± 1.08) was significantly higher than in the surgeon group (1.3 ± 0.27) (t = -2.17, P < .05). Eighty-three percent of eyes in the surgeon group and 93% of eyes in the machine learning group were within ±0.50 D, while 98% of eyes in the surgeon group and 96% of eyes in the machine learning group were within ±1.00 D. The error of SE correction was -0.09 ± 0.024 and -0.23 ± 0.021 for machine learning and surgeon groups, respectively.
The machine learning technique performed as well as surgeon in safety, but significantly better than surgeon in efficacy. As for predictability, the machine learning technique was comparable to surgeon, although less predictable for high myopia and astigmatism. |
---|---|
ISSN: | 0002-9394 1879-1891 |
DOI: | 10.1016/j.ajo.2019.10.015 |