Methotrexate significantly induces apoptosis by inhibiting STAT3 activation in NPM-ALK-positive ALCL cells

[Display omitted] Anaplastic large cell lymphoma (ALCL) is associated with a characteristic chromosomal translocation that generates the oncogenic fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). Methotrexate is a commonly used chemotherapeutic drug in the treatment of multiple ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2019-12, Vol.170, p.113666-113666, Article 113666
Hauptverfasser: Uchihara, Yuki, Komori, Reiko, Tago, Kenji, Tamura, Hiroomi, Funakoshi-Tago, Megumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Anaplastic large cell lymphoma (ALCL) is associated with a characteristic chromosomal translocation that generates the oncogenic fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). Methotrexate is a commonly used chemotherapeutic drug in the treatment of multiple cancers due to its inhibition of dihydrofolate reductase (DHFR), which suppresses the synthesis of DNA. In the present study, we found that low-dose methotrexate significantly induced apoptosis in transformed Ba/F3 cells expressing NPM-ALK by inhibiting the activation of signal transducer and activator of transcription factor 3 (STAT3), a critical downstream molecule of NPM-ALK. Although methotrexate prevented the phosphorylation of STAT3, it did not affect the activity of NPM-ALK. A co-treatment with folinic acid prevented the methotrexate-induced inhibition of STAT3 activation and induction of apoptosis, suggesting that methotrexate exerts its cytotoxic effects by depleting tetrahydrofolate (THF) in transformed cells by NPM-ALK. Furthermore, methotrexate induced the down-regulation of the anti-apoptotic protein, MCL-1, DNA damage, and the activation of a p53 tumor suppressor, leading to apoptosis through the inhibition of STAT3. Methotrexate significantly induced apoptosis in ALK inhibitor-resistant cells expressing the NPM-ALK mutant harboring the point mutation, G262R, and in ALCL patient-derived NPM-ALK-positive Ki-JK cells. Collectively, these results demonstrate the potential therapeutic application of methotrexate, which inhibits the activation of STAT3, to NPM-ALK-positive ALCL.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2019.113666