Transcytosis of Nanomedicine for Tumor Penetration

The diffusion of nanomedicines used to treat tumors is severely hindered by the microenvironment, which is a challenge that has emerged as a bottleneck for the effective outcome of nanotherapies. Classical strategies for enhancing tumor penetration rely on passive movement in the extracellular matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-11, Vol.19 (11), p.8010-8020
Hauptverfasser: Liu, Yan, Huo, Yingying, Yao, Lin, Xu, Yawen, Meng, Fanqiang, Li, Haifeng, Sun, Kang, Zhou, Guangdong, Kohane, Daniel S, Tao, Ke
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diffusion of nanomedicines used to treat tumors is severely hindered by the microenvironment, which is a challenge that has emerged as a bottleneck for the effective outcome of nanotherapies. Classical strategies for enhancing tumor penetration rely on passive movement in the extracellular matrix (ECM). Here, we demonstrate that nanomedicine also penetrates tumor lesions via an active trans-cell transportation process. This process was discovered by directly observing the movement of nanoparticles between cells, evaluating the intracellular trafficking pathway of nanoparticles via Rab protein labeling, comparing endocytosis-exocytosis between nanoparticles administered with inhibitors, and correlating the transcytosis process with the micro-CT distribution of nanomedicines. We also demonstrated that enhanced tumor penetration promotes the therapeutic efficacy of a photodynamic therapeutic nanomedicine. Our research thus suggests that transcytosis could be an important positive factor for designing cancer nanomedicines.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b03211