Similarity of medical concepts in question and answering of health communities

The ability to automatically categorize submitted questions based on topics and suggest similar question and answer to the users reduces the number of redundant questions. Our objective was to compare intra-topic and inter-topic similarity between question and answers by using concept-based similari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health informatics journal 2020-06, Vol.26 (2), p.1443-1454
Hauptverfasser: Naderi, Hamid, Madani, Sina, Kiani, Behzad, Etminani, Kobra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to automatically categorize submitted questions based on topics and suggest similar question and answer to the users reduces the number of redundant questions. Our objective was to compare intra-topic and inter-topic similarity between question and answers by using concept-based similarity computing analysis. We gathered existing question and answers from several popular online health communities. Then, Unified Medical Language System concepts related to selected questions and experts in different topics were extracted and weighted by term frequency -inverse document frequency values. Finally, the similarity between weighted vectors of Unified Medical Language System concepts was computed. Our result showed a considerable gap between intra-topic and inter-topic similarities in such a way that the average of intra-topic similarity (0.095, 0.192, and 0.110, respectively) was higher than the average of inter-topic similarity (0.012, 0.025, and 0.018, respectively) for questions of the top 3 popular online communities including NetWellness, WebMD, and Yahoo Answers. Similarity scores between the content of questions answered by experts in the same and different topics were calculated as 0.51 and 0.11, respectively. Concept-based similarity computing methods can be used in developing intelligent question and answering retrieval systems that contain auto recommendation functionality for similar questions and experts.
ISSN:1460-4582
1741-2811
DOI:10.1177/1460458219881333