Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway

Enhanced aerobic glycolysis is an essential hallmark of malignant cancer. Blocking the glycolytic pathway has been suggested as a therapeutic strategy to impair the proliferation of tumor cells. Metformin, a widely used anti-diabetes drug, exhibits anti-tumor properties. However, the underlying mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2019-12, Vol.239, p.116966-116966, Article 116966
Hauptverfasser: Hu, La, Zeng, Zicheng, Xia, Qing, Liu, Zhaoyu, Feng, Xiao, Chen, Jitao, Huang, Mengqiu, Chen, Liangcai, Fang, Zhiyuan, Liu, Qiuzhen, Zeng, Hongbo, Zhou, Xinke, Liu, Jifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhanced aerobic glycolysis is an essential hallmark of malignant cancer. Blocking the glycolytic pathway has been suggested as a therapeutic strategy to impair the proliferation of tumor cells. Metformin, a widely used anti-diabetes drug, exhibits anti-tumor properties. However, the underlying molecular mechanism of its action linking glucose metabolism with the suppression of proliferation has not been fully clarified. Stable isotope tracing technology and gas chromatography–mass spectrometry method were utilized to analyze the effect of metformin on glycolytic flux in HCC cells. Western blot and immunohistochemistry were utilized to analyze the expression of phosphofructokinase-1 (PFK1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in HCC cells or xenograft tumor tissues. Lactate measurement and glucose uptake assay were used to analyze the level of lactate and glucose in the presence of frucose-2,6-diphosphate (F2,6BP) in HCC cells treated with metformin. We found that metformin significantly impaired hepatoma cell proliferation by inhibiting the glycolytic flux via PFK1 blockade. Interestingly, activation of PFK1 by F2,6BP reverses the inhibitory effect of metformin on hepatoma cell proliferation and glycolysis. Mechanistically, PFKFB3,a potent allosteric activator of PFK1, was markedly suppressed through inhibiting hypoxia-induced factor 1 (HIF-1α) accumulation mediated by metformin. Taken together these data indicate that HIF-1α/PFKFB3/PFK1 regulatory axis is a vital determinant of glucose metabolic reprogramming in hepatocellular carcinoma, which gives new insights into the action of metformin in combatting liver cancer.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2019.116966