Micelle Heterogeneity from the 2D Kinetics of Solute Rotation
The chemical and physical properties of microstructured materials vary with position. The photophysics of solute molecules can measure these local properties, but they often show multiple rates (rate dispersion), which complicates the interpretation. In the case of micelles, rate dispersion in a sol...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2019-11, Vol.10 (21), p.6885-6891 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chemical and physical properties of microstructured materials vary with position. The photophysics of solute molecules can measure these local properties, but they often show multiple rates (rate dispersion), which complicates the interpretation. In the case of micelles, rate dispersion in a solute’s anisotropy decay has been assigned to either local anisotropy or heterogeneity in the local viscosity. To resolve this conflict, the rotation of PM597 molecules in SDS micelles has been measured by polarized MUPPETS (multiple population-period transient spectroscopy). This 2D technique shows that heterogeneity is strong and that local anisotropy is minimal. The results suggest that on a subnanosecond time scale, the solute sees only one strong fluctuation of the micelle structure. The anisotropic, average structure emerges on longer time scales. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.9b02783 |