Face Hallucination Using Cascaded Super-Resolution and Identity Priors
In this paper we address the problem of hallucinating high-resolution facial images from low-resolution inputs at high magnification factors. We approach this task with convolutional neural networks (CNNs) and propose a novel (deep) face hallucination model that incorporates identity priors into the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020, Vol.29 (1), p.2150-2165 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we address the problem of hallucinating high-resolution facial images from low-resolution inputs at high magnification factors. We approach this task with convolutional neural networks (CNNs) and propose a novel (deep) face hallucination model that incorporates identity priors into the learning procedure. The model consists of two main parts: i) a cascaded super-resolution network that upscales the low-resolution facial images, and ii) an ensemble of face recognition models that act as identity priors for the super-resolution network during training. Different from most competing super-resolution techniques that rely on a single model for upscaling (even with large magnification factors), our network uses a cascade of multiple SR models that progressively upscale the low-resolution images using steps of 2\times . This characteristic allows us to apply supervision signals (target appearances) at different resolutions and incorporate identity constraints at multiple-scales. The proposed C-SRIP model (Cascaded Super Resolution with Identity Priors) is able to upscale (tiny) low-resolution images captured in unconstrained conditions and produce visually convincing results for diverse low-resolution inputs. We rigorously evaluate the proposed model on the Labeled Faces in the Wild (LFW), Helen and CelebA datasets and report superior performance compared to the existing state-of-the-art. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2019.2945835 |