Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes
Predictions of epitopes presented by class II human leukocyte antigen molecules (HLA-II) have limited accuracy, restricting vaccine and therapy design. Here we combined unbiased mass spectrometry with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides eluted fro...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2019-11, Vol.37 (11), p.1283-1286 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Predictions of epitopes presented by class II human leukocyte antigen molecules (HLA-II) have limited accuracy, restricting vaccine and therapy design. Here we combined unbiased mass spectrometry with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides eluted from HLA-II molecules. We then trained an epitope prediction algorithm with these data and improved prediction of pathogen and tumor-associated class II neoepitopes.
HLA class II epitopes are accurately predicted by analysis of a large peptide dataset. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/s41587-019-0289-6 |