Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes

Predictions of epitopes presented by class II human leukocyte antigen molecules (HLA-II) have limited accuracy, restricting vaccine and therapy design. Here we combined unbiased mass spectrometry with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides eluted fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2019-11, Vol.37 (11), p.1283-1286
Hauptverfasser: Racle, Julien, Michaux, Justine, Rockinger, Georg Alexander, Arnaud, Marion, Bobisse, Sara, Chong, Chloe, Guillaume, Philippe, Coukos, George, Harari, Alexandre, Jandus, Camilla, Bassani-Sternberg, Michal, Gfeller, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predictions of epitopes presented by class II human leukocyte antigen molecules (HLA-II) have limited accuracy, restricting vaccine and therapy design. Here we combined unbiased mass spectrometry with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides eluted from HLA-II molecules. We then trained an epitope prediction algorithm with these data and improved prediction of pathogen and tumor-associated class II neoepitopes. HLA class II epitopes are accurately predicted by analysis of a large peptide dataset.
ISSN:1087-0156
1546-1696
DOI:10.1038/s41587-019-0289-6