Nonlocal solitons in fractional dimensions

We report the existence and stability properties of multipole-mode solitons supported by the nonlinear Schrödinger equation featuring a combination of the fractional-order diffraction effect and nonlocal focusing Kerr-type nonlinearity. We reveal that multipole-mode solitons, including an arbitrary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2019-10, Vol.44 (20), p.4917-4920
Hauptverfasser: Dong, Liangwei, Huang, Changming, Qi, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the existence and stability properties of multipole-mode solitons supported by the nonlinear Schrödinger equation featuring a combination of the fractional-order diffraction effect and nonlocal focusing Kerr-type nonlinearity. We reveal that multipole-mode solitons, including an arbitrary number of peaks, can propagate stably in fractional systems provided that the propagation constant exceeds a certain value, which is in sharp contrast to conventional nonlocal systems under a normal diffraction, where bound states composed of five peaks or more are completely unstable. Thus, we demonstrate, to the best of our knowledge, the first example of nonlocal solitons in fractional configurations.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.44.004917