Nonlocal solitons in fractional dimensions
We report the existence and stability properties of multipole-mode solitons supported by the nonlinear Schrödinger equation featuring a combination of the fractional-order diffraction effect and nonlocal focusing Kerr-type nonlinearity. We reveal that multipole-mode solitons, including an arbitrary...
Gespeichert in:
Veröffentlicht in: | Optics letters 2019-10, Vol.44 (20), p.4917-4920 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the existence and stability properties of multipole-mode solitons supported by the nonlinear Schrödinger equation featuring a combination of the fractional-order diffraction effect and nonlocal focusing Kerr-type nonlinearity. We reveal that multipole-mode solitons, including an arbitrary number of peaks, can propagate stably in fractional systems provided that the propagation constant exceeds a certain value, which is in sharp contrast to conventional nonlocal systems under a normal diffraction, where bound states composed of five peaks or more are completely unstable. Thus, we demonstrate, to the best of our knowledge, the first example of nonlocal solitons in fractional configurations. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.44.004917 |