Lupiwighteone induces caspase-dependent and -independent apoptosis on human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway
Breast cancer is one of the most common causes of mortality in women. Lupiwighteone has anticancer effects in prostate cancer cells and neuroblastoma cells. However, the molecular and cellular mechanisms of lupiwighteone effects on human breast cancer cells are not as well known. In the present stud...
Gespeichert in:
Veröffentlicht in: | Food and chemical toxicology 2020-01, Vol.135, p.110863-110863, Article 110863 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer is one of the most common causes of mortality in women. Lupiwighteone has anticancer effects in prostate cancer cells and neuroblastoma cells. However, the molecular and cellular mechanisms of lupiwighteone effects on human breast cancer cells are not as well known. In the present study, we investigated the effects of lupiwighteone on the proliferation and apoptosis of two different human cancer cells; MCF-7, an estrogen receptor (ER)-positive human breast cancer cell, and MDA-MB-231, a triple negative human breast cancer cell. Lupiwighteone treatment decreased the viability of MCF-7 and MDA-MB-231 cells. Lupiwighteone treatment resulted in apoptotic cell death in breast cancer cells, which was characterized by DNA fragmentation, accumulation of apoptotic cells, and nuclear condensation. We also showed that treatment with lupiwighteone induced caspase-dependent apoptosis (up-regulation of caspase-3, -7, -8, -9, PARP, and Bax or down-regulation of Bid, Bcl-2), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol), and inhibition of the PI3K/Akt/mTOR signaling pathway (down-regulation of PI3K, p-Akt, and p-mTOR) in both MCF-7 and MDA-MB-231 cells. These results suggest that lupiwighteone induces caspase-dependent and -independent apoptosis in both breast cancer cell lines via inhibiting PI3K/Akt/mTOR pathway.
•The molecular and cellular mechanisms of lupiwighteone effects on human breast cancer cells are not well known.•The present study is the first to investigate induction of apoptotic mechanism by lupiwighteone in human breast cancer cells.•The present study revealed that lupiwighteone in breast cancer cells has nothing to do with hormones. |
---|---|
ISSN: | 0278-6915 1873-6351 |
DOI: | 10.1016/j.fct.2019.110863 |