Wharton's jelly-derived mesenchymal stem cells attenuate sepsis-induced organ injury partially via cholinergic anti-inflammatory pathway activation
Sepsis induces organ dysfunction due to overexpression of the inflammatory host response, resulting in cardiopulmonary and autonomic dysfunction, thus increasing the associated morbidity and mortality. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) express genes and secrete factors wi...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2020-01, Vol.318 (1), p.R135-R147 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sepsis induces organ dysfunction due to overexpression of the inflammatory host response, resulting in cardiopulmonary and autonomic dysfunction, thus increasing the associated morbidity and mortality. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) express genes and secrete factors with anti-inflammatory properties, neurological and immunological protection, as well as improve survival in experimental sepsis. The cholinergic anti-inflammatory pathway (CAP) is mediated by α7-nicotinic acetylcholine receptors (α7nAChRs), which play an important role in the control of systemic inflammation. We hypothesized that WJ-MSCs attenuate sepsis-induced organ injury in the presence of an activated CAP pathway. To confirm our hypothesis, we evaluated the effects of WJ-MSCs as a treatment for cardiopulmonary injury and on neuroimmunomodulation. Male Wistar rats were randomly divided into four groups: control (sham-operated); cecal ligation and puncture (CLP) alone; CLP+WJ-MSCs (1 × 10
cells, at 6 h post-CLP); and CLP+methyllycaconitine (MLA)+WJ-MSCs (5 mg/kg body wt, at 5.5 h post-CLP, and 1 × 10
cells, at 6 h post-CLP, respectively). All experiments, including the assessment of echocardiographic parameters and heart rate variability, were performed 24 h after CLP. WJ-MSC treatment attenuated diastolic dysfunction and restored baroreflex sensitivity. WJ-MSCs also increased cardiac sympathetic and cardiovagal activity. WJ-MSCs reduced leukocyte infiltration and proinflammatory cytokines, effects that were abolished by administration of a selective α7nAChR antagonist (MLA). In addition, WJ-MSC treatment also diminished apoptosis in the lungs and spleen. In cardiac and splenic tissue, WJ-MSCs downregulated α7nAChR expression, as well as reduced the phospho-STAT3-to-total STAT3 ratio in the spleen. WJ-MSCs appear to protect against sepsis-induced organ injury by reducing systemic inflammation, at least in part, via a mechanism that is dependent on an activated CAP. |
---|---|
ISSN: | 0363-6119 1522-1490 |
DOI: | 10.1152/ajpregu.00098.2018 |