Wettability Control in Tree Structure-Based 1D Fiber Assemblies for Moisture Wicking Functionality
One of the fundamental properties of natural systems is their water transport ability, and living systems have efficient moisture management features. Here, a unique structure, inspired by the water transfer behavior in trees, was designed for one-dimensional (1D) fiber assemblies. In this 1D fiber...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-11, Vol.11 (47), p.44682-44690 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the fundamental properties of natural systems is their water transport ability, and living systems have efficient moisture management features. Here, a unique structure, inspired by the water transfer behavior in trees, was designed for one-dimensional (1D) fiber assemblies. In this 1D fiber assembly structure, a differential capillary effect enabling rapid water transfer at the interface between traditional cotton fibers and electrospun nanofibers was explored. A tree-like structure yarn was constructed successfully by novel electrospinning technology, and the effect was quantitatively controlled by precisely regulating the fibers’ wettability. Fabrics based on these tree-like core-spun yarns possessed advanced moisture-wicking performance, a high one-way transport index (R) of 1034.5%, and a desirable overall moisture management capability of 0.88, which are over two times higher than those of conventional fabrics. This moisture-wicking regime endowed these 1D fiber assemblies with unique water transfer channels, providing a new strategy for moisture-heat transmission, microfluidics, and biosensor applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b14370 |