Bias in retrospective analyses of biomarker effect using data from an outcome-adaptive randomized trial

Background/Aims Biomarker-stratified outcome-adaptive randomization trials, in which randomization probabilities depend on both biomarker value and outcomes of previously treated patients, are receiving increased attention in oncology research. Data from these trials can also form the basis of inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical trials (London, England) England), 2019-12, Vol.16 (6), p.599-609
Hauptverfasser: Ji, Lingyun, McShane, Lisa M, Krailo, Mark, Sposto, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background/Aims Biomarker-stratified outcome-adaptive randomization trials, in which randomization probabilities depend on both biomarker value and outcomes of previously treated patients, are receiving increased attention in oncology research. Data from these trials can also form the basis of investigation of additional biomarkers that may not have been incorporated into the original trial design. In this article, we investigate the validity of a standard analytical method that utilizes data from a biomarker-stratified outcome-adaptive randomization trial to assess the effect of a newly identified biomarker on patient outcomes. Methods In the context of an ancillary biomarker study for a two-arm phase II trial with a response endpoint, we conduct analytic and simulation studies to investigate bias in estimated biomarker effects under outcome-adaptive randomization. Conditions under which bias arises and magnitude of the bias are examined in several settings. We then propose unbiased estimators of biomarker effects with appropriate variance estimators. Results We demonstrate that use of biomarker-stratified outcome-adaptive randomization perturbs the patient population and treatment assignments. Consequently, application of standard analysis methods to data from an outcome-adaptive randomization trial either to estimate prognostic effect of a new biomarker in uniformly treated patients or to estimate effect of treatment in relation to the new biomarker can lead to substantially biased estimates. The proposed adjusted estimators are asymptotically unbiased, and the proposed variance estimators correctly reflect the sample variability in the estimators. Conclusion This article demonstrates existence of bias when standard, naïve statistical methods are utilized to assess biomarker effects using data from a biomarker-stratified outcome-adaptive randomization trial, and hence that results from naïve analyses must be interpreted with great caution. These findings highlight that, in an era where data and specimens are increasingly being shared for biomarker studies, care must be taken to document and understand implications of the study design under which specimens or data have been obtained.
ISSN:1740-7745
1740-7753
DOI:10.1177/1740774519875969