A Novel Tendon-Driven Soft Actuator with Self-Pumping Property

Soft actuators and robotics have been widely researched in recent years mainly due to their compliance to environments and safe interaction with humans. However, the need of tether and low energy efficiency of such actuators/robots has limited their practical applications. This article presents a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft robotics 2020-04, Vol.7 (2), p.13-139
Hauptverfasser: Ren, Tao, Li, Yingtian, Xu, Menghong, Li, Yunquan, Xiong, Caihua, Chen, Yonghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft actuators and robotics have been widely researched in recent years mainly due to their compliance to environments and safe interaction with humans. However, the need of tether and low energy efficiency of such actuators/robots has limited their practical applications. This article presents a novel tendon-driven soft actuator concept that has the property of self-pumping, called soft self-pumping actuator (SSPA) in this research. A SSPA is designed by assembling two soft pneumatic actuators (SPAs) face-to-face, whose air chambers are connected by two check valves. Actuation of the SSPA is achieved by tendons that allows precise and untethered control compared with traditional SPAs. The two chambers in the proposed actuators are precharged with air to a desired pressure to enlarge self-stiffness and to facilitate bending. When actuated, one chamber will be compressed and serve as a pump to inject its air into the other chamber, resulting in further bending of the actuator. The airflow involves energy transmission to help the intended actuation, thus improving energy efficiency. In experimental studies, differential chamber air pressure is found to reduce the force in initiating actuator bending. Experimental results have also shown that energy efficiency increase of up to 45% has been achieved compared with the same design but without air transmission. We believe that the proposed concept could lead to more novel designs of controllable and energy saving soft robots.
ISSN:2169-5172
2169-5180
DOI:10.1089/soro.2019.0008