Oxygen-Deficient Nanofiber WO3–x /WO3 Homojunction Photoanodes Synthesized via a Novel Metal Self-Reducing Method

Defect engineering of semiconductors has been identified as an efficient route toward enhancing the photoelectrochemical performances. There is a security threat in the traditional hydrogen annealing process. In this work, the oxygen-defective nanofiber WO3–x /WO3 homojunction photoanode was in situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-10, Vol.11 (43), p.39951-39960
Hauptverfasser: Zhan, Faqi, Liu, Yang, Wang, Keke, Yang, Xuetao, Liu, Min, Qiu, Xiaoqing, Li, Jie, Li, Wenzhang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Defect engineering of semiconductors has been identified as an efficient route toward enhancing the photoelectrochemical performances. There is a security threat in the traditional hydrogen annealing process. In this work, the oxygen-defective nanofiber WO3–x /WO3 homojunction photoanode was in situ-synthesized via a novel metal self-reducing method. The as-prepared photoanode exhibits 1.8 times higher solar water oxidation photocurrent density than that of the bare WO3 film at 1.2 V versus Ag/AgCl. The enhanced photoelectrochemical properties originate from the effective charge separation and injection, attributed to the stronger built-in electric field created by the oxygen-deficient homojunction. Importantly, this novel method is universally applicable to synthesize oxygen-deficient semiconductor materials, including films and powders.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b13326