Importance of Sporopollenin Structure and Accessibility in the Sorption of Phenanthrene by Biota Spores and Pollens

Although spores/pollens are so abundant and ubiquitous in the environment, the role of these natural organic matter concerning fate and transport of organic pollutants in the environment is neglected. Lipid-free fractions and sporopollenins were isolated from seven spores/pollens collected from lowe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-12, Vol.53 (24), p.14285-14295
Hauptverfasser: Xu, Decheng, Hu, Shujie, Zhang, Dainan, Xiong, Yongqiang, Yang, Yu, Ran, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although spores/pollens are so abundant and ubiquitous in the environment, the role of these natural organic matter concerning fate and transport of organic pollutants in the environment is neglected. Lipid-free fractions and sporopollenins were isolated from seven spores/pollens collected from lower and higher biota species and were characterized by elemental analysis, CO2 adsorption techniques, and advanced solid-state 13C nuclear magnetic resonance spectroscopy. Then, the sorption isotherms of phenanthrene (Phen) on all the samples were investigated by a batch technique. The sporopollenins were a highly cross-linked polymer including alkyl carbon, poly­(methylene) carbon, and aromatic carbon as well as oxygen functionalities; additionally, their sorption capacities (K oc) for Phen reached up to 1 170 000 mL/g, suggesting that some of the sporopollenins were good biopolymeric sorbents for the removal of hydrophobic organic contaminants in aquatic media. A highly significant and positive correlation between the sorption capacity of Phen and the aliphaticity of the sporopollenins suggested that their structure was critical to Phen sorption. Meanwhile, the (O + N)/C atomic ratios and polar groups were significantly and negatively correlated with the sorption capacity of Phen, indicating that accessibility also played a significant role in the sorption process. Moreover, variable correlations between the sorption capacities (K oc) and the micropore volumes of the spore/pollen fractions were observed. This study sheds light on the importance of the polarity, microporosity, and structure of sporopollenins in the sorption process of Phen.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.9b03911